

DWARAKA DOSS GOVERDHAN DOSS VAISHNAV COLLEGE (Autonomous) College with Potential for Excellence Linguistic Minority Institution. Affiliated to University of Madras

POST GRADUATE AND RESEARCH DEPARTMENT OF MATHEMATICS

B.Sc. Mathematics With Computer Applications

CURRICULUM AND SCHEME OF EXAMINATIONS Choice Based Credit System (CBCS) & Outcome Based Education (OBE)

(with Effect from the Academic Year 2024-2025)

COURSESTRUCTURE

FIRSTSEMESTER

Course Content	Name of the Course	Ins.Hrs	Credits	Int.Marks	Ext.Marks	Total
Part–I	Language Paper-I	4	3	50	50	100
Part- II	English Paper-I	4	3	50	50	100
Part- III	CorePaper-I: Algebra and Trigonometry	6	4	50	50	100
	CorePaper-II: Differential Calculus	6	4	50	50	100
	Elective Paper I:Programming with Python	4	3	50	50	100
	Practical Paper I:Python Programming-Lab	2	2	50	50	100
Part-IV	BasicTamil/Adv.Tamil /NonMajor Elective-I	2	2	50	50	100
	SoftSkills-I	2	3	50	50	100
	Value Added Course		-			
	Total	30	24			

SECONDSEMESTER

Course Content	Name of the Course	Ins.Hrs	Credits	Int.Marks	Ext.Marks	Total
Part–I	LanguagePaper -II	4	3	50	50	100
Part- II	EnglishPaper -II	4	3	50	50	100
Part- III	CorePaper-III: Analytical Geometry	6	4	50	50	100
	CorePaper-IV: Integral Calculusand VectorAnalysis	6	4	50	50	100
	Elective Paper- II: JAVA Programming	4	3	50	50	100
	Practical Paper II: JAVA Programming – Lab	2	2	50	50	100
Part-IV	BasicTamil/Adv.Tamil/	2	2	50	50	100
	Non Major Elective -II	2	2			100
	Soft Skills-II	2	3	50	50	100
	Total	30	24			

THIRDSEMESTER

Course Content	Nameof theCourse	Ins.Hrs	Credits	Int.Marks	Ext.Marks	Total
Part–I	Language Paper -III	6	3	50	50	100
Part- II	English Paper -III	4	3	50	50	100
Part- III	Core Paper-V: Differential Equations	5	4	50	50	100
	Elective III : Database Management Systems	4	3	50	50	100
	Practical PaperIII: RDBMS –Lab	2	2	50	50	100
	Allied Paper- I-Probability and statistics-I	6	5	50	50	100
Part-IV	Environmental Studies	1		EXAM IN TH		
	Environmental Studies	1		IV S	V SEMESTI	
	SoftSkills-III	2	3	50	50	100
	Extradisciplinary		1			
	Value added course					
	Total	30	24			

FOURTH SEMESTER

Course Content	Nameof theCourse	Ins.Hrs	Credits	Int.Marks	Ext.Marks	Total
Part–I	Language Paper-IV	6	3	50	50	100
Part- II	English Paper-IV	4	3	50	50	100
Part- III	Core Paper-VI: Integral Transforms	5	4	50	50	100
	Core Paper VII: Discrete Mathematics	6	4	50	50	100
	Allied Paper- II-Probability and statistics-II	6	5	50	50	100
Part-IV	Environmental Studies	1	2	50	50	100
	Soft Skills-IV	2	3	50	50	100
	Extradisciplinary		1			
	Total	30	25			

FIFTHSEMESTER

Cours eCont ent	Nameof theCourse	Ins.Hrs	Credits	Int.Marks	Ext.Marks	Total
Part- III	CorePaper-VIII: Algebraic Structures	6	4	50	50	100
	CorePaper- IX:RealAnalysis-I	6	4	50	50	100
	CorePaper-X: Mechanics					100
	Core Paper-XI:Operations Research	6	4	50	50	100
	Elective Paper-IV : Artificial Intelligence And Expert Systems	6	3	50	50	100
	Internship / Industrial Training (Summer vacation at the end of IV semester activity)		1			
Part-IV	ValueEducation		2	50	50	100
	Value added course		-			
	Total	30	22			

SIXTH SEMESTER

Course Content	Nameof theCourse	Ins.Hrs	Credits	Int.Marks	Ext.Marks	Total
	CorePaper-XII: LinearAlgebra	6	4	50	50	100
	CorePaper-XIII:RealAnalysis-II	6	4	50	50	100
Part- III	CorePaper-XIV:Complex Analysis	6	4	50	50	100
	CorePaper-XV: Operating Systems	6	4	50	50	100
	Elective Paper V: WEB DESIGN	4	3	50	50	100
	Practical Paper V: Web Design - Lab	2	2	50	50	100
Part-V	Extension Activity		1			
	Project		1			
		30	23			

1

÷

Extra Disciplinary Course

- Financial Mathematics with R
- Numerical Methods
- Basic data analysis using excel
- Mathematics for competitive examinations & general studies

Value Added course:

Power BI / Tableau / SQL

Advance Excel

Machine Learning with R

Data Science with Python

Full Stack Development

TallyTable:

Subject	No. of Subjects	Total Marks	credits
Core– Theory Papers	15	1500	60
Elective Papers	5	500	15
Allied Papers	2	200	10
Practical	4	400	8
Language	4	400	12
English	4	400	12
Softskills	4	400	12
Non Major electives/Basic Tamil	2	200	4
Environmental Science	1	100	2
Value Education	1	100	2
Extension Activity	1		1
Internship	1		1
Extra disciplinary Papers	2		2
Value added course	3		-
Project			1
Grand Total		4200	142

rr			
Components		Marks	Total
		Theory	
CIA I	50		
CIA II	50	30	
Generic Activity		15	50
Attenda	ance	5	

Components of Continuous Internal Assessment

FIRST SEMESTER(SYLLABUS)

TitleoftheCourse	eCourse ALGEBRAANDTRIGONOMETRY								
PaperNumber					Ι				
Cotogory	Con	Year	Ι	Credit	1	Cour			
Category	Cor	Semester	Ι	Crean	4	Cour			
	e			S		Se			
						Code			
Objectives of the C	Jourse								
Basic ideas	on the T	heory of Eq	uations	, Matrice	s and l	Number The	ory.		
• Knowledge to find expansions of trigonometry functions, solve theoretical and									
applied problems.									
		Unit1							
		Reciprocal	equatio	ons – Star	ndardfo	orm-Increasi	ngor Decreasing		
		the roots of	f the giv	renequati	on-Re	movalofterm	S-		
		Approxima	itesoluti	ons ofro	ots of j	polynomials	by Horner's		
		method-Re	lated Pr	oblems.	171	0.20			
		Unit?	Section	5:10,10.1	1,1/, 1	9,30			
		Summation	ofSerie	s.Binom	ial_Ev	nonential-Lo	garithmicseries		
		(Theorems	withou	t proof)_I	Related	d Problems	garitinneseries		
		Chapter-3	:Section	ns:10 Ch	apter-	4:Sections: 3	3 to 7		
CourseOutline		I Unit3			1				
		Characterie	tic equi	otion Fig	anvalu	as & Figan Va	actors		
		Similar ma	trices_ (aulev - 1	Hamilt	ton Theorem	(Statement		
		only)-Findi	ing now	ers of so	llare m	atrix-Inverse	of a		
		square mat	rix un te	order 3	-Diago	nalization of	f square		
		matrices-R	elated P	roblems.	Diago	inunzution of	square		
		Chapter2:	Section	s:16,16.1	to 16	.4			
		Unit4		,					
		Expansions	s of sin	nθ,cos n	θinp	owersofsinθ,	$\cos\theta$ –Expansions		
		of tan nA in	terms o	ftan 0 -Ex	nansic	$nsof cos^{n} \theta s$	inna cosmasinna		
		Expansion	s of tan	$(\theta_1 + \theta_2)$	++θr)-Expansion	sof $\sin\theta \cos\theta$ and		
		tane in ter	ms of A	-Related	Probl	ems.	~ 5mo,0050 and		
		Chanter?	Section	s:2.1 2 1	.1.2.1	2			
		Chanter 3.	Section	nc•3131	132	_ 134341t	0343		
		Unit5	Section						
		Hyperbolic	functio	ons-Relat	ion be	tween circul	ar and hyperbolic		
		functions-	Form	ulas in	hvne	rbolicfuncti	ons – Inverse		
		hyperbolic	function	ns-Logar	rithm	of	complex		
		quantities,	Summa	tionofTr	igono	metric ser	ries– Related		
		problems.							
		Chapter4:	Section	s:4.1to4.	7.				
		Chapter5:	Section	s:5.1to5.	3				
		Chapter6:	Section	s:6.1 to6	.6				
					-				

	1. Algebra, Volume I by T. K. Manicavachagam Pillay,
	T.Natarajan, K.S.Ganapathy, Viswanathan Publication
	2007.Unit – 1 and 2.
	2. Algebra, VolumeIIbyT.K. ManicavachagomPillay
Contents and	,T.Natarajan,K.S.Ganapathy,ViswanathanPublication
treatmentasin	2008.Unit – 3.
	3. Trigonometry by P. Duraipandian and
	KayalalPachaiyappa,MuhilPublishers,U
	nit-4,Unit-5
	1. W.S. Burnstine and A.W. Panton, Theory of equations
	2. David C. Lay, Linear Algebra and its Applications.
ReferenceRooks	3rd Ed. Pearson Education Asia. Indian Reprint 2007
NCICI CIICEDOURS	3 G B Thomas and R I Finney Calculus 9th Ed
	Dearson Education Delhi 2005
	A C V Durall and A Dahaar Advanced Trigonometry
	4. C. V. Duren and A. Robson, Advanced Trigonometry,
	Courier Corporation, 2003
	5.J. Stewart, L. Redlin, and S. Watson, Algebra and
	Trigonometry, Cengage Learning, 2012.
	6. Calculus and Analytical Geometry, G.B. Thomas and
	R. L. Finny, Pearson Publication, 9th Edition, 2010.
	1. <u>http://mathworld.wolfram.com</u>
e-Resources	2. <u>http://www.themathpage.com/</u>
	3. <u>http://mathworld.wolfram.com</u>
	4. <u>http://ocw.mit.edu/courses/mathematics/</u>

<u>CourseOutcomes:</u>Attheendof thecourse,theStudentwillbeableto

CO1	Classify and Solve reciprocal equations
CO2	Find the sum of binomial, exponential and logarithmic series
	Find Eigen values, eigen vectors, verify Cayley – Hamilton theorem and
CO3	diagonalize a given matrix
CO4	Expand the powers and multiples of trigonometric functions in terms of sine and cosine
CO5	Determine relationship between circular and hyperbolic functions and the summation of trigonometric series

Mapping of Course Outcomes to Program Outcomes and Program Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3	2	3	1	2	2	2	3	2	1
CO2	3	3	2	2	1	2	2	2	3	2
CO3	2	2	3	2	3	2	2	1	2	2
CO4	3	2	1	2	2	2	1	3	2	2
CO5	3	2	3	2	2	2	1	3	2	2

TitleoftheCourse			Differen	ntial Calcı	ılus		
PaperNu	ımber				Ι	[
Category	Core	Year	Ι	Credits	4	Course Code	

CourseObjectives

- > TodeveloptheabilitytouseLeibnitz Rule
- > Toknow about the method to find the maxima and minima
- > Todevelop theskillsofthestudentsintheareaof Curvature
- > Tolearnmethodsandtechniquesof finding asymptotes.

CONTENTSOFMODULE

UNIT–I: Successive differentiation - nth derivative- standard results – Trigonometrical transformation – formation of equations using derivatives - Leibnitz's theorem and its applications

Chapter 3 section 1.1 to 1.6, 2.1 and 2.2

UNIT-II: Total differential of a function – special cases – implicit functions - partial derivatives of a function of two functions - Maxima and Minima of functions of two variables- Lagrange's method of undetermined multipliers.

Chapter 8 : Section 1.3 to 1.5 and 1.7, Section 4, 4.1 and 5.

UNIT–III: Envelopes – method of finding envelopes – Curvature- circle, radius and centre of curvature- Cartesian formula for radius of curvature – coordinates of the centre of curvature – evolute-and involute - radius of curvature and centre of curvature in polar coordinates – p-r equation

Chapter 10 Section 1.1 to 1.4 and Section 2.1 to 2.7

UNIT-IV: Polar coordinates - angle between the radius vector and the tangent – slope of the tangent in the polar coordinates – the angle of intersection of two curves in polar coordinates- polar sub tangent and polarsub normal – the length of arc in polar coordinates. Chapter 9 Section 4.1 to 4.6

UNIT-V: Definition-Asymptotes parallel to the axes – special cases – another method for finding asymptotes -asymptotes by inspection – intersection of a curve with an asymptote.

Chapter 11 - Section 1 to 7.

RecommendedTextBook:

1. "Calculus", Volume - 1 by S. Narayanan and T.K. Manicavachagompillay S.Viswanathan publishers – 2006.

ReferenceBooks:

1.Calculus, Dr. P.R. Vittal&Dr. V. Malini, Margham Publications, Chennai.

- 2.Calculus by Thomas and Fenny, PearsonPublication. Calculus byStewart
- 3. Introduction to Calculus and Analysis ,R. Courant and F. John, (Volumes I & II), Springer- Verlag, New York, Inc., 1989.
- 4. Calculus, T. Apostol, Volumes I and II.
- 5. Calculus and mathematical analysis, S. Goldberg.

Website and e-Learning Source

https://nptel.ac.in https://mathhelp.com

<u>CourseOutcomes:</u>Attheendof thecourse,theStudentwillbeableto

	Evaluate the pth derivative Using Leibnitz Dule
CO1	Evaluate the fifth derivative Using Leibintz Rule
	Finding the maxima and minima for the functions of two variables
CO2	
	Calculate the Envelope, Evolute, radius of curvature and circle of curvature
CO3	
	Finding the angle between radius vector and tangent.
CO4	
	Calculate the asymptotes of the curve
CO5	

Mapping of Course Outcomes to Program Outcomes and Program Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3	2	3	1	2	2	2	3	2	1
CO2	3	3	2	2	1	2	2	2	3	2
CO3	2	2	3	2	3	2	2	1	2	2
CO4	3	2	1	2	2	2	1	3	2	2
CO5	3	2	3	2	2	2	1	3	2	2

1 - Low 2 – Medium 3 – High

CourseTitle: Elective Paper-I:Programming with Python

.....

•••••

CourseCode:	Credits	03
L:T:P:S :	CIAMarks	:50
ExamHours:03	ESEMarks	:50

Courseobjectives

- > To make students understand the concepts of PYTHONprogramming.
- > To apply the OOPs concept in PYTHON programming.
- > To make the students learn best practices in PYTHON programming.

CourseOutcomes:At the end of the course, students will be able to

CO1	Understand the concept of operators, data types in python programming.
CO2	Understand control statements and Looping
CO3	Apply the concept of functions in python programming.
CO4	Understand the concept of formatting operator and strings
CO5	Analyze the structures of list, tuples and maintaining dictionaries

S.NO	CONTENTSOFMODULE	Hrs	COs				
1.	Basics of Python Programming: Features – History – Future – Python Interpreterand Interactive Mode – Writing and Executing First Python Programme – Valuesand Types – Data Types – Operators and Expressions – Operations on						
	FunctionsandModules.Chapter2:Section2.1–2.22						
2.	ControlFlowStatements:IntroductiontoDecisionControlStatements– Conditional Branching –Loops Structures – Nested Loops – Break – Continue – Pass– ElseStatement Used withLoops. Chapter 3:Section 3.1–3.8	12	CO2				
3.	 Functions: Introduction – Defining a function – Function Call – Variable Scopeand Lifetime – Fruitful Function – Lambda – Function Composition – DocumentationStrings – Recursive FunctionsChapter4:Section4.1–4.8,4.10 (Omit4.9) 						
4.	Strings:Concatenating,Appending,andMultiplyingStrings–Immutable– FormattingOperator–Built-inStringMethodsandFunctions–SliceOperation– Comparing Strings – Iterating String. Lists, Tuples and Dictionaries: Sequence – Lists.Chapter5:Section 5.1 –5.5,5.8, 5.9(Omit5.6,5.7)Chapter6:Section 6.1 to 6.2	12	CO4				
5.	Lists,TuplesandDictionaries:Tuple– DictionariesFileHandling:OpeningandClosing Files – Reading and Writing Files. Error and Exception Handling:Introduction– HandlingExceptions.Chapter6: Section6.4 to6.5(Omit 6.3) Chapter7: Section7.4, 7.5 Chapter8: Section8.1, 8.2	12	CO5				

TextBook:

1."Problem Solving and Programming with Python", by ReemaThareja (Second Edition,

2019,OXFORD UniversityPress)

Referencebooks:

- 1. Problem Solving and Python Programming" by Mr. Ashok NamdevKamthane andMr.Amit AshokKamthane(McGrawHillEducation (India)Private Limited).
- $2. \ ``Python Programming'' by Ch. Sathyanarayana, M. Radhika$

MappingofCourseOutcomestoProgramOutcomes:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3	2	1	0	0	3	2	3	1	2
CO2	1	2	2	0	0	2	1	2	3	3
CO3	3	1	2	0	0	1	2	3	2	2
CO4	2	3	1	0	0	2	2	1	2	1
CO5	3	2	2	0	0	1	1	2	1	3

3-StrongCorrelation 2-MediumCorrelation1-LowCorrelation

FIRST SEMESTER(SYLLABUS)

CourseTitle: Practical Paper-I: PythonProgramming–Lab CourseCode:

Credits - 2

WriteaPythonProgramforthefollowing

- 1. Compute theArea and Circumference of a Circle
- 2. To find the greatest among three numbers
- 3. Program to calculate roots of a quadratic equation
- 4. Determine the given number is an Armstrong number
- 5. Compute the G.C.D. of two Numbers
- 6. Sum these $1/1+2^2/2+3^2/3+\ldots+n^2/n$
- 7. Finding Factorial of a number
- 8. To print the Fibonacci Series using recursion
- 9. Count the occurrences of a character in a string
- 10. Program to reverse a string
- 11. Calculate distance between two points
- 12. To add two matrices
- 13. Print a histogram of frequencies of characters occurring in a message
- 14. Generate Floyd's triangle.
- 15. Implement Tower of Hanoi problem

SECOND SEMESTER

TitleoftheCo	urse	ANALYTICAL GEOMETRY										
PaperNun	ıber	III										
C. A. S. S.	C	Year	Ι		4	C						
Category	Core	Semester	II	Creatts	4	Course						
Objectives of	the Co					Coue						
Necess	ary chi	ills to analyze of	horacta	ristics and	nron	arties of two	and three dimensional					
• recessary skins to analyze characteristics and properties of two-and unce-dimensional geometric shapes												
 To present mathematical arguments about geometric relationships 												
 To present matical arguments about geometric relationships. To solve real world problems on geometry and its applications 												
		UNIT-I:Polar a	and pol	e.conjugate	e poi	ntsandconju	gatelines-diameters –conjugate					
		diameters of an	ellipse	-semi dia	meter	rs-conjugate	diameters of hyperbola.					
							0.5					
		Chapter7:Sect	ions:7.	2,7.3,Chaj	ptera	Section8.2-	-8.5.					
		UNIT-II: Pola	r coor	dinates: G	lener	al polar eq	uation of straight line –Polar					
		equation of a c	equation of a circle given a diameter. Equation of a straight line circle conic-									
CourseOutlin	e	Equation of a straight me, of the symptotes of a straight me, of the second										
		Equationorenord, ungent, norman Equations of measy inprotestorally periodia.										
		Chapter10:Sections:10.1–10.8.										
		UNIT-III: The	olane–7	Transforma	tiont	othenormalf	form–					
		Determination	faplane	eundergive	encon	ditions-Syst	emofPlanes-					
		Twosidesofapla	ne-Ler	gthofthepe	erper	dicularfrom	apointtoaplane – Joint					
		equation of two planes – Orthogonal projection on a plane										
		Chapter 2: Sections : 2.3–2.9.										
		UNIT-IV-Representationofline_lineandaplane_co_planarlines										
		constantsintheequationsofastraightline_theshortest distance between two skew										
		lines- Length of the perpendicular from a point to a line-intersection of three										
		planes.										
		- Chapter3:Sect	ions:3.	1to3.8.								
		UNIT-V: Equa	tion of	a sphere –	Defi	nition – the s	phere through four given points					
		- Section of a sphere by a plane - equation of a circle -tangent plane - angle of										
		intersection of t	wo sph	eres- cond	ition	for the ortho	ogonality of two spheres-radical					
		plane.	1									
				4 6 6								
		Chapter6:Sect	<u>ions:6.</u>	1–6.8.	6	AD 1						
Contentsand		1. Analyti	cal G	eometry	of .	2D by P	.Duraipandian- Muhil					
treatment asi	<u>n</u>	Publish	ers tor	Unit 1 and	aUni	t 2						

	2. Analytical Solid Geometry of 3D by Shanthi Narayan							
	andDr.P.K.Mittal-S.Chand&Co.Pvt.LtdforUnit3toUnit5							
ReferenceBooks	1. Calculus and Analytical Geometry, G.B. Thomas and							
	R.L.Finny,PearsonPublication,9 th Edition, 2010.							
	2. Analytic Geometry with Calculus, Robert C. Yates, Prentice Hall,							
	Inc.,NewYork, 1961.							
	3. Algebraand Trigonometry with Analytic Geometry, Earl W. Swokowski and Jeffer							
	yA.Cole,TwelfthEdition,Brooks/Cole,CengageLearning, CA,USA, 2010.							
	4. Analytical Geometry of Three Dimensions, William H. McCrea,							
	DoverPublications,Inc,NewYork, 2006.							
	5. CalculusandAnalyticGeometry,JohnF.Randelph,WadsworthPublishingComp							
	any, CA, USA,1969.							
	6. Analytic Geometry and Calculus with Vectors, Ralph Palmer							
	Agnew,McGraw-Hill BookCompany,Inc.NewYork, 1962.							
	1.https://nptel.ac.in							
e-Resources	2. https://www.mathhelp.com/							

CourseOutcomes: Attheendof thecourse, the Studentwill beable to

CO1	Find pole, polar for conics, diameters, conjugate diameters for ellipse and hyperbola
CO2	Find the polar equations of straight line and circle, equations of chord, tangent and normal and to find theasymptotes of hyperbola
CO3	Explain in detail the system of Planes
CO4	Explain in detail the system of Straight lines
CO5	Explain in detail the system of Spheres

Mapping of Course Outcomes to Program Outcomes and Program Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3	2	3	1	2	2	2	3	2	1
CO2	3	3	2	2	1	2	2	2	3	2
CO3	2	2	3	2	3	2	2	1	2	2
CO4	3	2	1	2	2	2	1	3	2	2
CO5	3	2	3	2	2	2	1	3	2	2

1 - Low 2 – Medium 3 – High

Title of th	e Course		Integ	gral Calcu	lus an	d Vector Ana	lysis		
PaperN	umber		IV						
Category	Core	Year	Ι	Credits	4	Course Code			

CourseObjectives

- To develop the ability to useReduction formula
- To know about the method to find theVolume
- To develop the skills of the students in the Indefinite Integral.
- To learn methods and techniques of solving line and surface Integral.

CONTENTSOFMODULE

UNIT–I: Reduction formulae– Types, $\int x^n e^{ax} dx$, $\int x^n cosax dx$, $\int x^n sinax dx$, $\int cos^n x dx$, $\int sin^n x dx$, $\int sin^n x cos^n x dx$, $\int tan^n x dx$, $\int cot^n x dx$, $\int e^{nx} dx$, $\int cosec^n x dx$, $\int x^n (\log x)^m dx$ -Bernoulli's formula.

Chapter 1 Section 13, 13.1 to 13.10,14,15.1.

UNIT-II: Multiple Integrals- definition of the double integrals- evaluation of the double integrals- double integrals in polar coordinates – triple integrals – change of variables – Jacobians-Propeties without proof.

Chapter 5 Section 1, 2.1, 2.2, 3.1, 4 Chapter 6 Section 1.1, 1.2

UNIT–III: Beta and Gamma functions - infinite integral – definitions – recurrence formula of Gamma functions -properties of Gamma-functions - relation between Beta and Gamma functions. Evaluation of double and triple integrals using Beta gammafunctions.

Chapter 7 Section 2.1,2.2, 2.3, 3,4,5

UNIT-IV: Introduction - directional derivative- Gradient- divergence- curl-Laplacian Differential Operator.

Chapter 2 Sections 2.1 - 2.13.

UNIT-V: Line, surface and volume integrals - Integral Theorems - Gauss, Greens and Stokes (Without proof) – Problems.

Chapter 3 Sections 3.1 to 3.6

Chapter 4 Sections 4.1 to 4.5.

RecommendedTextBook:

1. Calculus", Vol-II by S.Narayanan and T.K.Manicavachagampillay S. Viswanathanpublishers– 2007 for Unit 1 , Unit 2 , Unit3.

2."Vector Analysis" by P.Duraipandian and KayalalPachaiyappa, S.Chand For Unit 4, Unit 5.

ReferenceBooks:

1. Integral Calculus and differential equations : Dipak Chatterjee (TATA McGrawHill PublishingcompanyLtd.).

- 2. Vector Algebra and Analysis by Narayanan and T.K.Manickvachagam PillayS. ViswanathanPublishers.
- 3. Vector Analysis: Murray Spiegel (Schaum PublishingCompany, NewYork).

Website and e-Learning Source https://nptel.ac.in https://mathhelp.com

CourseOutcomes:

Attheendof thecourse, the Student will be able to

CO1	Evaluate the Integral using Reduction formula
CO2	Calculate Area and Volume using double and triple Integral
	Evaluate the Indefinite Integral using the properties of Beta and
CO3	Gamma function.
	Calculate directional derivatives, Curl, divergence.
CO4	
	Solve Line and Surface Integral using Greens, stokes and Gauss
CO5	theorem

Mapping of Course Outcomes to Program Outcomes and Program Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3	2	3	2	2	2	2	3	2	1
CO2	3	3	2	2	1	2	2	2	3	2
CO3	2	2	3	2	1	2	2	2	2	2
CO4	3	2	2	2	2	2	1	3	2	2
CO5	3	2	3	2	1	2	2	2	2	2

1 Low 2 – Medium 3 – High

Course Title: Elective Paper II: JAVA PROGRAM	IMING	
CourseCode:	Credits	03
L:T:P:S : 3:1:0:0	CIAMarks	:50
ExamHours:03	ESEMarks	:50

Course Objectives:

- > To get in-depth Knowledge about the evolution of java and its Features.
- > Bring out the difference and similarities between C, C++ and java.
- > Develop programmers in Java with its special Features.
- > Implementing the code in internet using Applet with AWT controls.
- > Course Outcomes: At the end of the Course, the Student will be able to:

Course Outcomes: At the end of the Course, the Student will be able to:

	Knows the reason about the evolution of Java its
CO1	development. Study the basic of Java and to develop code.
	Importance of Java comparing the other language.
CO2	Develop program using constructors and its types.
	Definition of inheritance and Writing programmed related to it
	Differentiate string class and string buffer.
	Concept of packages, interface, threads.
CO3	Implementing the concept Exception handling various application.
	Significance of exception handling.
	Life cycle of thread.
CO4	Explain I/O streams.
	Create file using Byte Stream and character Stream classes.
CO5	Usage of Java in internet
	Definition of Applet and Developing code to connect to internet.
	Life Build Applet code using AWT controls and Layout managers

Mapping of Course Outcomes to Program Specific Outcomes:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	1	2	3	3	3	2	3	1	2	3
CO2	2	3	3	3	3	3	3	2	3	3
CO3	3	2	3	3	3	3	3	2	3	3
CO4	2	3	3	3	2	3	3	3	2	3
CO5	3	2	3	2	3	3	3	3	3	3

3-Strong Correlation 2-Medium Correlation 1-Low Correlation

SI No.	Contents of Module	Hrs	COs
1	Introduction to Java - Features of Java –Java Tokens - Data Types - Variables -Arrays - Operators - Control Statements: Decision Making- Looping Statements.	10	CO1
2	Classes - Objects - Constructors - Overloading method - Static and Final members - String Objects - String Class - String Buffer - Inheritance - Overriding methods -Using super-Abstract class.	15	CO2
3	Packages - Interfaces - Exception Handling –User-Defined Exception – Multithreading - Thread - Runnable Interface.	10	CO3
4	I/O Streams: Stream classes – Byte stream classes - Character stream classes – FileStreams – Using File class – File exceptions – Creation of file – Reading or writing characters/bytes – Random access files.	10	CO4
5	Applets – Preparing to write applets – Building Applet code – Applet life cycle – Applet tag – Passing parameters to Applets - AWT Controls - Layout Managers.	15	CO5

Recommended Text Books:

1. E.Balagurusamy, "Programming with Java", Fourth Edition, 2010, Tata McGraw-Hill. 2.P Radha Krishna, "Object Oriented Programming through Java", Second Edition, 2007, UniversitiesPress.

Reference Books:

- 1. K. Arnold and J. Gosling, "The Java Programming Language", Second Edition, 1996, AddisonWesley.
- 2. P. Naughton and H. Schildt, "Java2 (The Complete Reference)", Eight Edition, 2005, Tata McGraw-Hill.
- 3. Kathy Sierra and Bert Bates, "Head First Java", Second Edition, 2003, Oreilly

SECOND SEMESTER (SYLLABUS)

Course Title: Practical Paper–II: JAVA Programming Lab Course Code:

Credits - 2

Course Objectives:

> To apply the Java concepts through various applications and to develop a web page.

JAVA & APPLETS

Course Outcome: At the end of the Course the student shall be able to
CO1: Write basic Java applications using String Class and String Buffer .
CO2: Create classes, objects and apply Inheritance.
CO3: Build Java applications using interface and Exception Handling.
CO4:Create Packages and build applications using default packages.
CO5: Manage Files and develop multithreaded applications.
CO5: Create GUI applications using AWT components.

Lab Exercises:

- 1. Program using String Class.
- 2. Program using String Buffer.
- 3. Programming using Inheritance.
- 4. Program using interface.
- 5. Program using Exception Handling.
- 6. Program using packages.
- 7. Program using Files.
- 8. Implementing Thread based applications
- 9. Working with Colors, Fonts and Shapes.
- 10. Usage of AWT components in suitable applications.

THIRD SEMESTER

Differential Equations

Course	B.Sc. Maths	redits 04	Credits
		CIA 50	CIA
Exam	02	larks 50	Marks
Hours	03	ESE 50	ESE
		larks 50	Marks

Course objectives

- > To solve first order Ordinary differential equations
- > To evaluate particular integrals of special forms
- > To solve non homogeneous simultaneous linear differential equations
- > To compute complete, singular and general integrals of partial differential equations
- > To apply Charpits method

Course	Unit I: Ordinary Differential Equations: Concept of existence and uniqueness .						
Outline	Variable separable-Homogeneous Equation-Non-Homogeneous Equations of first						
	degree in x and y-Linear Equation-Bernoulli's Equation-Exact differential equations.						
	Chapter 2: Section 1 to 6.						
	Unit II: Equation of first order but not of higher degree: Equation solvable for						
	dy/dx- Equation solvable for y- Equation solvable for x- Clairauts form-						
	Linear Equations with constant coefficients-Particular integrals						
	e^{ax} , sin ax , cos ax , x^m , Ve^{ax} where V is sin ax or cos ax or x^m .						
	Chapter 4: Section 1, 2.1, 2.2, 3.1, Chapter 5: Section 4.						
	Unit III: Simultaneous linear differential equations- Linear Equations of the						
	Second Order -Complete solution in terms of a known integrals-						
	Reduction to the Normal form- Change of the Independent Variable -						
	Method of Variation of Parameters(constant coefficients).						
	Chapter 6: Section- 6, Chapter 8: Section- 1,2,3,4.						
	Unit IV: Partial differential equation: Formation of PDE by Eliminating						
	arbitrary						
	constants and arbitrary functions-complete integral-singular integral-General						
	integral- Lagrange's Linear Equations Pp+Qq=R.						
	Chapter 12: Section- 1, 2, 3.1, 3.2, 4.						
	Unit V: Special methods - Standard forms - Charpit's Methods - Related						
	problems						
	Chapter 12: Section-5.1, 5.2, 5.3, 5.4, 6.						

Recommended Text:

1. Differential Equations and its applications", by S.Narayanan,

T.K.Manikavachagam Pillay -- S.Viswanathan (Printers and Publishers) Pvt. Ltd(2006).

ReferenceBooks

- 1. Introductory course in Differential Equations, D.A. Murray, Orientand Longman
- 2. Elementary Treaties on Differential Equations and their applications, H.T. H. Piaggio,
- C.B.S Publisher & Distributors, Delhi, 1985.
- 3. Calculus and Analysis, Horst R. Beyer, Wiley, 2010.

4. Differential Equations and their Applications, B r a u n , M. (3rd Edn.), Springer-Verlag, New York. 1983.

5. Linear Partial Differential Equations for Scientists and Engineers Tyn Myint-U and Lognath Debnath. (4th Edn.) Birhauser, Berlin.2007.

6. Elementary Differential Equations and Boundary Value Problems, Boyce, W.E. and R.C. DiPrima. (7th Edn.) John Wiley and Sons, Inc., New York. 2001.

7. Ordinary and Partial Differential Equations, Sundrapandian, V. Tata McGraw Hill Education Pvt. Ltd. New Delhi, 2013

Course Outcomes: At the end of the course, students will be able to

CO1	Solve linear differential equation and Demonstrate Bernoulli's equation and
	exactness of first order differential equations
CO2	Exhibit Clairauts form and solve linear differential equations with constant
	coefficients
CO3	Apply variation of parameter method to solve second order differential
	equations
CO4	Demonstrate Partial differential equations and its solutions
CO5	Implement Charpit's method

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	2	2	2			2	2	2	2	2
CO2	2	3	2			1	2	1	2	2
CO3	2	2	1			2	2	2	3	2
CO4	1	2	2			2	3	3	2	3
CO5	3	2	3			2	2	2	2	2
		1	Low	2	– Med	ium	3	– High		

Course Title: Elective Paper III: DATABASE MANAGEMENT SYSTEMS

Course Code:	Credits	03
L:T:P:S : 3:1:0:0	CIAMarks	:50
Exam Hours:03	ESEMarks	:50

Course Objectives:

=

- > Detailed description for the structure of Database, file and records.
- Structuring the models for Normalization of different Normal Forms.
- > Emphasizing the types of statements for control languages.
- Demonstration of Subprograms, Functions and Procedures
- Elaborating the concepts of Triggers and Cursors

Course Outcomes: At the end of the Course, the Student will be able to:

CO1	To demonstrate the characteristics of Database Management Systems. To study about the concepts and models of database. To impart the concepts of System Development Life Cycle and E-R Model.
CO2	To classify the keys and the concepts of Relational Algebra. To impart the applications of various Normal Forms Classification of Dependency.
CO3	To elaborate the different types of Functions and Joins and their applications. Introduction of Views, Sequence, Index and Procedure.
CO4	To give the Representation of PL-SQL Structure. To impart the knowledge of Sub Programs, Functions and Procedures.
CO5	To give the Representation of Exception and Pre-Defined Exception. To Point out the Importance of Triggers, Implicit and Explicit Cursors.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	2	3	3	3	3	3	3	2	3	3
CO2	2	3	3	3	3	2	3	3	2	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	2	3	2	2	3	3
CO5	3	3	3	2	1	2	3	1	3	3
1 Low				2 - Mec	lium	3 -	- High	•	•	•

Sl No.	Contents of Module	Hr s	Cos
1	Introduction - Database System - Characteristics of Database Management Systems - Architecture of Database Management Systems - Database Models - System Development Life Cycle - Entity Relationship Model	15	CO1
2	Introduction to Relational Database Model - Structure of Relational Model - Keys - Relational Algebra - Normalization: Functional Dependency - First Normal form - Second Normal Form Third Normal form - Boyce-Code Normal Form - Fourth Normal Form.	15	CO2
3	SQL: Introduction-Data Retrieval - Single row function - Group function - Set Function - Sub query -Joins. Data Manipulation Language: Insert, Update and Delete Statements - Transaction Control Language - View - Sequence - Synonym - Index - Defining Constraints	15	CO3
4	PL/SQL: Introduction-PL/SQL Basic-Character Set- PL/SQL Structure- SQL Cursor Subprograms-Functions-Procedures.	15	CO4
5	Exception Handler Introduction - Predefined Exception - User Defined Exception - Triggers -Implicit and Explicit Cursors - Loops in Explicit Cursor.	15	CO5

TEXT BOOK:

1. Pranab Kumar Das Gupta and P. Radha Krishnan, "Database Management System Oracle SQL and PL/SQL", Second Edition, 2013, PHI Learning Private Limited.

REFERENCE BOOKS:

- 1. RamezElmasri and Shamkant B. Navathe, "Fundamentals of Database Systems", Fifth Edition, 2007, Pearson Publications.
- 2. <u>Abraham Silberschatz</u>, Henry Korth, <u>S. Sudarshan</u>, "Database System Concepts", Sixth Edition, 2010, Mc- 1Graw Hill Education.

E-REFERENCE:

1. <u>http://www.amazon.in/DATABASE-MANAGEMENT-SYSTEM-ORACLE-SQL</u> o/dp/B00LPGBWZ0#reader_B00LPGBWZ0

THIRD SEMESTER (SYLLABUS)

Course Title: Practical Paper –III: <u>RDBMS LAB</u> Course Code:

Credits - 2

Course Objectives:

• To make the student aware of the Back-End tool.

Lab Exercises:

- 1. DDL commands.
- 2. Specifying constraints-primary key, foreign key, unique, check, not null.
- 3. DML commands.
- 4. Joins.
- 5. Sub queries.
- 6. Creation of simple PL/SQL block using control constructs
- 7. Creation of PL/SQL blocks using exceptional handlers.
- 8. PL/SQL program using implicit and explicit cursor.
- 9. PL/SQL program using procedures.
- 10. PL/SQL program using triggers.
- 11. Data Manipulation using PL/SQL.

Title Of The	Course	PROBABILITY	AND STATIS	ΓICS – I	
Paper Nur	nber		I	Ι	
	A 11' 1	Year	II		
Category	Allied	Semester	III	Credits	5

Course Objectives

Students will acquire knowledge of

- > The laws of Probability and Baye's theorem.
- > Measures of Location, Dispersion, Correlation and Regression
- > The Discrete and Continuous Probability Distribution

COs	CONTENTS OF MODULE
CO1	UNIT-I: Concept of sample space – Events – Definition of Probability (classical, Statistical & Axiomatic) – Addition and Multiplication laws of Probability– Independence – Conditional Probability – Baye's theorem - Simple Problems Chapter – 4: Sections - 4.3,4.3.1,4.5,4.5.1,4.5.2,4.5.3,4.6.1,4.6.2,4.7,4.9.
CO2	UNIT-II: Random Variables (Discrete and Continuous) Distribution function- Expected values and Moments- Moment generating function – cumulants- Examples Chapter – 5: Sections – 5.1,5.2,5.3,5.4,5.4.1,5.4.3 Chapter – 6: Sections – 6.1,6.7,6.9,6.10.
CO3	 UNIT-III: Characteristic function- Uniqueness and Inversion theorems (Statements and applications only)- Chebychev's Inequality – Simple Problems. Convergence in probability, Weak Law of large numbers with numerical examples. Chapter – 6: Sections – 6.11,6.12.
CO4	UNIT-IV: Concepts of bivariate distributions- Correlation and Regression- Linear Prediction- Rank Correlation coefficient, Intra class correlation coefficient, Concepts of partial and multiple correlation coefficients- Simple problems. Chapter – 10: Sections – 10.1 – 10.7.4.
CO5	UNIT-V: Standard Distributions – Bernoulli Distribution, Binomial- Poisson- Normal- Uniform distributions- Geometric- Exponential- Gamma -Beta distributions- Inter relationship between distributions. Chapter – 7: Sections – 7.1,7.2,7.3.1. Chapter – 8: Sections – 8.1- 8.6.

Contents and treatment as in	Elements of Mathematical Statistics, by S.C.Gupta &V.K.Kapoor, Sultan Chand & Sons, New Delhi.					
Reference Books	 Hogg R.V. & Craig A.T. (1988) : Introduction toMathematical Statistics,McMillan. Mood A.M. &Graybill F.A. &Boes D.G. (1974): Introductionto theory of Statistics,McGrawHill. Snedecor G.W. & Cochran W.G(1967) : StatisticalMethods, Oxford andIBH. 					
e-Resources:	 <u>https://nptel.ac.in</u> <u>https://www.wikipedia.org</u>. <u>http://ebooks.lpude.in.statistics</u>. 					

Course OCourse Outcomes: At the end of the Course, the Student will be able to

CO1	Illustrate and describe sample spaces and events for random experiments. calculate probabilities of event in discrete sample spaces and conditional probabilities of events using Baye's theorem.
CO2	Calculate the expected value of a probability distribution, obtain moments and its generating function and also obtain probability generating function
CO3	Apply the concepts of characteristic function and Chebychev's Inequality and demonstrate the theorems related to convergence in probability
CO4	Study the relationship between two or more variables
CO5	Illustrate the concept of a probability distribution and sketch the same to real world problems involving various distributions like Binomial, Poisson and Normal distribution, Uniform distributions Geometric, Exponential, Gamma, Beta distributions and identify the Inter relationship between distributions.

Mapping of Course Outcomes to Program Outcome & Program Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3	3	2	1	2	2	2	3	3	2
CO2	3	2	2	1	2	2	2	2	2	3
CO3	3	3	2	1	1	1	2	3	2	2
CO4	3	2	1	2	2	2	2	2	2	2
CO5	3	2	1	1	2	2	2	2	3	3

3-High

2-Medium

1-Low

Integral Transforms

Course	B.Sc Maths
Exam Hours	03

Credits	04
CIA Marks	50
ESE Marks	50

Course objectives

- To understand Laplace Transform
- > To apply Laplace transform to solve differential equations
- > To analyse Fourier series and its applicability
- > To compute Fourier Transform

Course Outline	Unit I: The Laplace Transforms-Definitions-Sufficient conditions for the existence of the Laplace transform(without proof)-Laplace transform of periodic functions-some general theorems-evaluation of integrals using Laplace
	transform-Problems.
	Chapter 5: Section-1 to 5.
	Unit II: The inverse Laplace Transforms- Applications of Laplace Transforms
	to ordinary differential equations with constant co-efficients and variable
	co-efficients, simultaneous equations and equations involving
	integrals-Problems.
	Chapter 5: Section-6 to 12
	Unit III: Fourier series. Expansion of periodic functions of period $2\pi_{-}$
	Expansion of even and odd functions. Half range Fourier series.
	Change of intervals –Problems
	Chapter 6: Section-1 to 6
	Unit IV: Fourier Transform- Infinite Fourier Transform(Complex form) –
	Properties of Fourier Transform.
	Chapter 6: Section-8 to 10.
	Unit V: Fourier cosine and Fourier sine
	I ransform – Properties – Parseval's identity – Convolution theorem -
	Chapter 6: Section 11 to 15

Recommended Text Book:

- 1. "Calculus-Volume III" S.Narayanan and T.K.ManicavachagamPillai.
- S. Viswanathan Publishers Pvt. Ltd. 2006

Reference Books

- 1. Engineering Mathematics Volume III, P. Kandasamy and Others, (S. Chand and Co)
- 2. Advanced Engineering Mathematics Stanley Grossman and William R. Devit
- 3. Engineering Mathematics III, A. Singaravelu, Meenakshi Agency, Chennai 2008.
- 4.Engineering Mathematics for Semester III- Third Edition T.Veerarajan ,Tata McGraw-Hill Publishing Company Ltd, New Delhi

Website and e-Learning source

https://nptel.ac.in https://www.mathhelp.com/

Course Outcomes: At the end of the course, students will be able to

CO1	Analyse Laplace transform and the conditions of existence of
	Laplace transform
CO2	Implement the Laplace transform technique to solve differential
	equations
CO3	Study the expansion of periodic functions using Fourier Series
CO4	Demonstrate the Fourier transform and its properties
CO5	Illuminate problems using Fourier cosine and Fourier sine
	Transform .

Mapping of Course Outcomes to Program Outcome & Program Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3	2	2			2	2	2	2	2
CO2	2	3	1			1	2	1	2	2
CO3	2	2	2			2	2	2	3	2
CO4	2	3	2			2	3	2	2	2
CO5	3	2	2			2	2	2	2	2

3-High

2-Medium

1-Low

Title of the Course		DISCRETE MATHEMATICS						
Paper Nu	mber	VII						
Category	Core	Year Semest er	II IV	Credit s	4	Cour se Code		

Course Objectives: Students will acquire knowledge

- > To apply tools and ideas in Mathematics for solving Applied Problems.
- To Evaluate Boolean functions and to express a logic sentence in terms of predicates,

quantifiers, and logical connectives.

COs	CONTENTS OF MODULE
CO1	UNIT-I: Integers: Set, some basic properties of integers, Mathematical induction, divisibility of integers, representation of positive integers Chapter 1 - Sections 1.1 to 1.5
CO2	UNIT- II: Boolean algebra & Applications: Boolean algebra, two element Boolean algebra, Disjunctive normal form, Conjunctive normal form Chapter 5 - Sections 5.1 to 5.4
CO3	 UNIT–III: Application, Simplification of circuits, Designing of switching circuits, Logical Gates and Combinatorial circuits. Chapter 5 - Section 5.5, 5.6
CO4	 UNIT-IV: Recurrence relations and Generating functions: Sequence and recurrence relation, Solving recurrence relations by iteration method, Modeling of counting problems by recurrence relations, Linear (difference equations) recurrence relations with constant coefficients, Generating functions, Sum and product of two generating functions, Useful generating functions, Combinatorial problems. Chapter 6 - Section 6.1 to 6.6
CO5	UNIT-V: Proportional logic and Predicate logic: Proportional logic, Adequate system of connectivies, Translation of sentences in a Natural Language into Statement Formula, Logical validity of arguments, Predicate Logic, Negation of a statement obtained by qualification of a predicate, Logical operations on predicates or quantified predicates, Symbolization of sentences by using predicates, Quantifiers and connectives, Logical validity of arguments. Chapter 8 - Sections 8.1, 8.5 to 8.8 (Omit Section 8.2 to 8.4)

Contents and	"Introduction to Discrete Mathematics", 2 nd edition, 2002 by M.								
treatment as	K. Sen and B. C.Chakraborty, Books and Allied Private Ltd.,Kolkata.								
in									
Reference Books	 Discrete mathematics for computer scientists and mathematicians by J. L.Mertt, AbrahamKendel and T. P. Baker prentice-hall,India. Discrete mathematics for computer scientists by John Truss- AddisonWesley. Elements of Discrete Mathematics, C. L. Liu, NewYork Mcgraw-Hill,1977. 								
e-Resources:	 <u>https://brilliant.org/wiki/discrete-mathematics/</u>. <u>https://www.tutorialspoint.com/discrete_mathematics/</u>. 								

Course Outcomes: At the end of the Course, the Student will be able to

CO1	Analyze the divisibility of integer and also representation of
CO2	Apply Boolean algebra concepts in disjunctive and conjunctive normal form
CO3	Identifying, designing and analyzing circuits, logical gates and combinatorial circuits
CO4	Demonstrate recursive function and classify homogeneous and non- homogeneous linear recurrence relations
CO5	Demonstrate Proportional logic and Predicate logic

Mapping of Course Outcomes to Program Outcome & Program Specific Outcomes

	PO	PO	PO		DO5	PO	PO	PSO	PSO	PSO
	1	2	3	P04	P05	6	7	1	2	3
CO1	3	2	1	1	1	1	1	1	2	2
CO2	3	2	1	1	1	2	1	2	2	2
CO3	2	3	2	1	1	1	1	1	2	2
CO4	2	2	1	1	1	2	1	1	2	2
CO5	2	3	2	1	1	1	1	1	3	3

3-High

2-Medium

1-Low

Title Of Th	e Course	PROBABILITY AND STATISTICS – II					
Paper Nu	ımber	IV					
<i>a</i> .		Year	II				
Category	Allied	Semest er	IV	Credits	5		

Learning outcomes: Students will acquire knowledge

- To provide the foundation of statistical analysis used in varied application
- Of Sampling methods, Tests of significance and testing of hypothesis.

COs	CONTENTS OF MODULE
C01	UNIT-I: Sampling Distributions – Concept of Standard error – Sampling distribution based on normal distribution- t, z, Chi Square and F distributions. Chapter – 12: Sections –12.1 – 12.3.1. Chapter – 13: Sections – 13.1 – 13.3.3. Chapter – 14: Sections – 14.1 – 14.5.2.
CO2	UNIT- II Point estimation – Concepts of unbiasedness – consistency – efficiency and sufficiency- Cramer Rao inequality – Methods of estimation- Maximum likelihood- moments - minimum square and their properties (Statement only). Chapter – 15: Sections – 15.1 – 15.4
CO3	UNIT–III: Test of significance – Standard error- Large sample test, Exact test based on normal, t, chi-square and F distribution with respect to population mean/means, proportion/proportions, variance and correlation coefficient. Test of independence of attributes based on contingency tables- Goodness of fit based on chi-square. Chapter – 12: Sections – 12.3.2 12.9 Chapter – 13: Sections – 13.5.2,13.5.3
CO4	UNIT-IV: Analysis of Variance: One way, two way classification concepts &Problems. Interval estimation – Confidence intervals for population mean/means- Proportion/proportions and variances based on t, Chi-Square and F. Chapter – 17: Sections – 17.1 – 17.3
CO5	UNIT-V: Test of hypothesis- Type I and II errors- Power of test – Neymann Pearson lemma- Likelihood ratio test-concepts of most powerful test- statements and results only-simple problems. Chapter – 16: Sections – 16.1 – 16.5

Recommended Text:

Elements of Mathematical Statistics, by S.C.Gupta &V.K.Kapoor, Sultan Chand & Sons,New Delhi.

Reference Books	1. Hogg R.V. & Craig A.T. (1988): Introduction toMathematical Statistics McMillan
	2 Mood A M & Gravbill F A & Boes D G (1974): Introduction
	to theory of Statistics,McGrawHill.
	3. Snedecor G.W. & Cochran W.G(1967) : StatisticalMethods,
	Oxford andIBH.
	4. Hoel P.G. (1971) : Introduction to MathematicalStatistics,
	Wiley.
	5. Wilks S.S. Elementary Statistical Analysis, Oxford and IBH.
	1. <u>https://nptel.ac.in</u>
e-Resources:	2. <u>https://www.wikipedia.org</u> .
	3. <u>http://ebooks.lpude.in.statistics</u> .

Course Outcomes: At the end of the Course, the Student will be able to

CO1	Identify a statistic and point out its importance in application and summarize the theoretical aspect of normal and non-normal populations.
CO2	Explain the bound for defining most efficient estimates derived from Rao Cramer inequality and compare the process of finding interval estimation with the process of finding point estimation.
CO3	Fit best approximation for a given set of data and also compare and analyze whether two sets of data are coming from same population or different population
CO4	Analyze the variability of samples under the given distributions and also obtain its confidence intervals
CO5	Point out the existence of most powerful test by summarizing the theoretical aspects of Neymann Pearson result.

Mapping of Course Outcomes to Program Outcome & Program Specific Outcomes

	PO 1	PO 2	PO 3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3	2	2	1	1	2	2	3	3	2
CO2	3	3	2	1	1	1	3	3	2	2
CO3	2	3	3	1	1	2	1	2	2	2
CO4	3	3	2	1	1	2	2	3	3	2
CO5	3	3	2	1	1	2	1	2	2	2

1 Low $2 - Medium$ $3 - H$	ligh
----------------------------	------

FIFTH SEMESTER

Title of the (Course	ALGEBRAIC STRUCTURES					
Paper Nun	nber	VIII					
	Core	Year	II		4	Course	
Category		Semester	IV	Credits		Code	

Course Objectives:

Students will acquire knowledge about the concepts of Sets, Groups and Rings.

COs	CONTENTS OF MODULE
CO1	Unit I: Introduction to groups- Subgroups- cyclic groups - Lagrange's
	Theorem- A counting principle-Examples
	Chapter 2: Section 2.4 and 2.5.
CO2	Unit II: Normal subgroups and Quotient group- Homomorphism-
	Automorphism- Examples.
	Chapter 2: Section 2.6 to 2.8.
CO3	Unit III: Cayley's Theorem- Permutation groups-Examples.
	Chapter 2: Section 2.9 and 2.10.
	Unit IV: Definition and examples of ring- Some special classes of rings-
CO4	homomorphism of rings- Ideals and quotient rings- More ideals and quotient
04	rings.
	Chapter 3: Section 3.1 to 3.5.
CO5	Unit V: The field of quotients of an integral domain- Euclidean Rings- The
	particular Euclidean ring-Examples.
	Chapter 3:Section 3.6to 3.8.

Contents and treatment as in

Topics in Algebra – I. N. Herstein, Wiley Eastern Ltd Second Edition (1st January 2006)

Reference Books

- 1. A First Course in Abstract Algebra, John B. Fraleigh, 7th Ed., Pearson, 2002.
- 2. Abstract Algebra, M. Artin, 2nd Ed., Pearson, 2011.
- 3. Contemporary Abstract Algebra, Joseph A Gallian, 4th Ed., Narosa, 1999
- 4. Modern Algebra by M.L.Santiago, McGraw Hill EducationIndia pvt Ltd
- 5. Modern Algebra by S. Arumugam and others, NewGamma publishing House, Palayamkottai.
- 6. Modern Algebra by Visvanathan Nayak, Emerald Publishers, Reprint1992

Website and e-Learning Source

- 1. <u>https://nptel.ac.in</u>
- 2. <u>http://garsia.math.yorku.ca/~sdenton/algstruct.</u>
- 3. https://nptel.ac.in https://www.mathhelp.com/

Course Outcomes: At the end of the Course, the Student will be able to

CO1	Summarize the structure of Group, Subgroups and Demonstrate operations satisfying
COI	various properties in group structure.
CO2	Explain normal subgroups, quotient groups, homomorphism, automorphism and
	demonstrate with an example.
CO3	Explain Cayley's theorem, the permutations groups with an example.
CO4	Define Rings, some special classes of rings with an example and Explain ideals and quotient Rings
CO5	Illustrate Imbedding of Integral domain over Field and demonstrate the
	Euclidean Rings.

Mapping of Course Outcomes to Program Outcomes & Program Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PS02	PS03
CO1	3	3	2	2	1	2	2	3	3	2
CO2	3	3	2	2	1	2	2	3	2	3
CO3	3	3	1	1	1	2	1	3	1	2
CO4	3	3	1	1	1	2	1	2	2	2
CO5	3	2	1	2	1	2	2	3	2	2

1 Low 2 – Medium 3 – High

Course Title: Real Analysis-I

Course	B.Sc. Maths	Credits	04
Exam Hours	03	CIA Marks	50
		ESE Marks	50

Course objectives

- > To make the students capable of analysing any given sequence and series
- > To calculate limit superior, limit inferior and the limit of a sequence
- > To learn certain proof techniques and write precise proof of theorems
- To recognize alternating, conditionally convergent and absolutely convergent series

CONTENTS OF MODULE

Unit I:

Sets and Functions: Sets and elements- Operations on sets- functions- real valued functionsequivalence- countability - real numbers- least upper bounds.

Chapter 1 Section 1.1 to 1.7

Unit II:

Sequences of Real Numbers: Definition of a sequence and subsequence- limit of a sequenceconvergent sequences- divergent sequences- bounded sequences- monotone sequences **Chapter 2 Section 2.1 to 2.6**

Unit III:

Operations on convergent sequences- operations on divergent sequences- limit superior and limit inferior- Cauchy sequences.

Chapter 2 Section 2.7 to 2.10

Unit IV:

Series of Real Numbers: Convergence and divergence- series with non-negative termsalternating series- conditional convergence and absolute convergence- tests for absolute convergence- series whose terms form a non-increasing sequence- the class l^2 .

Chapter 3 Section 3.1 to 3.4,3.6,3.7 and 3.10

Unit V:

Limits and Metric Spaces: Limit of a function on a real line-. Metric spaces - Limits in metric spaces. Continuous Functions on Metric Spaces: Function continuous at a point on the real line-Reformulation- Function continuous on a metric space.

Chapter 4 Section 4.1 to 4.3 Chapter 5 Section 5.1 to 5.3

Recommended Text: Contents and treatment as in

1. Richard R. Goldberg, Methods of Real Analysis, Oxford and IBH Publishing Co.
Reference Books:

- 1. Principles of Mathematical Analysis by Walter Rudin, TataMcGrawHill.
- 2. Mathematical Analysis Tom M Apostol, Narosa Publishing House

Website and e-Learning Source

https://nptel.ac.in https:www.mathhelp.com/

Course outcomes: At the end of the course, students will be able to

CO1	Describe the fundamental properties of the real numbers that lead to the
	formal development of real analysis and recognize the basic properties of
	the field of real numbers, cardinality of a sets.
CO2	Demonstrate the concepts of limits in sequences and examine the basic
	principles of convergence and conditions of the convergent, divergent of a
	sequence.
CO3	Estimate the limit superior, limit inferior, limit of a sequence and explain
	Cauchy sequence.
CO4	Construct mathematical proofs of convergence test of a sequence and
	distinguish between conditional convergence and absolute convergence.
	Explain and demonstrate the basic concepts of absolute convergence of a
	sequence and derive the 'test for convergence' using summation by parts.
CO5	Explain the Euclidian distance function and the geometric meaning of each
	of the metric space properties and point out whether a given distance
	function is a metric.

Mapping of Course Outcomes to Program Outcomes and Program Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	2	3	2	1	2	2	2	2	2	2
CO2	3	2	2	1	2	2	2	3	2	2
CO3	2	2	2	1	1	3	2	2	2	2
CO4	3	2	1	1	1	3	1	3	2	3
CO5	3	2	2	1	2	2	2	3	2	3

1 Low 2 – Medium 3 – High

Course Title: Mechanics

Course	B Sc (Maths)
Exam Hours	03

Credits	04
CIA Marks	50
ESE Marks	50

Course objectives

- Students will acquire knowledge about
- Particles or body in rest under the given forces. Forces, equilibrium of a particle and centre of mass of various bodies.
- The motion of bodies under the influence of forces. Rectilinear motion of particles, Projectiles and Moment of Inertia of Particles.

COs	CONTENTS OF MODULE
CO1	Unit 1
	Force- Newtons laws of motion - resultant of two forces on a particle-
	Equilibrium of a particle, Limiting equilibrium of a particle on an inclined
	plane.
	Chapter 2 - Section 2.1, 2.2,
	Chapter 3 - Section 3.1 -3.2
CO2	Unit 2
	Forces on a Rigid Body: Moment of a Force – General motion of a body –
	Equivalent systems of forces- Parallel Forces, Forces along the sides of a
	triangle – Couples.
	A hanging body in equilibrium, Hanging strings- equilibrium of a uniform
	homogeneous string – suspensionbridge.
	Chapter 4 : Sections 4.1 to 4.6
	Chapter 9 - Section 9.1, 9.2.
CO3	Unit 3
	Kinematics -Basic units – velocity – acceleration- coplanar motion . Rectilinear
	motion under varying Force: Simple harmonic motion (S.H.M.) – S.H.M.
	along a horizontal line- S.H.M. along a vertical line
	Chapter 1 - Section 1.1 to 1.4
	Chapter 12 - Section 12.1 to 12.3
CO4	Unit4
	Projectiles -Forces on a projectile- projectile projected on an inclined plane.
	Moment of inertia, Perpendicular and parallel axes theorem
	Chapter 13 - Section 13.1, 13.2
	Chapter 17 - Section 17.1, 17.1.1
CO5	Unit 5
	UNIT-V: Central Orbits: General orbits – Central orbit – Conic as a centered
	orbit
	Chapter 16 - Section 16.1 to 16.3

Contents and treatment as in

Mechanics, by P.Duraipandian, Lakmi Duraipandian and Muthamizh Jayapragasam, S.Chand and company private limited Reprint 2016.

Reference Books

- 1. Engineering Mechanics: Statics, J.L. Meriam and L. G. Kraige, Seventh Edition, Wiley and sons Pvt ltd., New York, 2012.
- 2. Engineering Mechanics: Dynamics, J.L. Meriam, L. G. Kraige, and J.N. Bolton, 8th edition Wiley and sons Pvt ltd., New York, 2015.
- 3. Engineering Mechanics (Statics and Dynamics)A. K. Dhiman, P.Dhinam and D. Kulshreshtha, McGraw Hill Education(India) Private Limited, New Delhi, 2015.
- 4. Introduction to Statics and Dynamics , A. Ruina and R. Pratap, Oxford University Press, 2014.
- 5. The Elements of Statics and Dynamics, S.L. Loney, Cambridge University Press, 1904.
- 6.Dynamics K. ViswanathaNaik and M. S. Kasi, Emerald Publishers.
- 7. Dynamics A. V. Dharmapadam, S. ViswanathanPublishers.

e-Resources:

- 1. https://www.wikipedia.org/
- 2. https://physics.info

Course outcomes: At the end of the course, the student will be able to

CO1	Recall the basic definitions of forces, Newtons laws of motion, Equilibrium of a particle.
CO2	Distinguish problems under moments, parallel forces and couples. Explain hanging body in equilibrium and demonstrate problems under hanging strings.
CO3	Recall the basic definitions of velocity, acceleration, coplanar motion simple harmonic motion and demonstrate problems under Simple harmonic motion.
CO4	Recall concepts of projectiles, differentiate time of flight, horizontal range. Explain moment of Inertia of simple bodies and theorems of parallel and perpendicular axes
CO5	Define circular motion, central orbits, and evaluate various problems centered orbit.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PS02	PS03
CO1	3	3	2	1	1	2	2	3	3	2
CO2	3	3	2	1	1	2	2	3	2	3
CO3	3	3	1	1	1	2	1	3	1	2
CO4	3	3	1	1	1	2	1	2	2	2
CO5	3	2	1	2	1	2	2	3	2	2
1 Low 2 – Medium						3 – H	ligh			

Mapping of Course Outcomes to Program Outcomes & Program Specific Outcomes:

	Course Thie. Operations Research						
Course	B Sc (Maths)	Credits	04				
Exam	02	CIA Marks	50				
Hours	03	ESE Marks	50				

Course Title: Operations Research

Course objectives

- To formulate and solve the Linear Programming Problem from the realworld problems in business and industry.
- Develop mathematical skills to analyze and solve network models arising from a wide range of applications.

CONTENTS OF MODULE

Unit -1: Linear programming – Formulation – Graphical solution – Simplex method – Simple applications. Big-M method.

Chapter - 2,3,4

Unit -2: Linear programming - Principle of Duality – Primal – Dual relation -Dual simplex method – Simple applications. **Transportation Problem**: Finding initial solution by North West Corner Rule – Vogel's Approximation method and Matrix minimum method – Procedure for finding optimal solution –MODI method – Both minimisation and maximisation cases – Unbalanced and degenerate transportation problems.

Chapter 5: 5.1 – 5.4, 5.7

Chapter 10: 10.1-10.13

Unit -3: Assignment Problem: Formulation – Minimisation cases – procedure for getting optimum solution – Unbalanced problem – Maximisation problem – Problems with restrictions.

Game Theory: Two Person Zero-Sum game with saddle point – without saddle point – dominance rule – Solving 2 x n or m x 2 game by graphical method.

Chapter 11: 11.1 – 11.4 Chapter 17: 17.1 -17.7

Unit -4: Networks: Rules for network construction – Critical Path Method - Time calculation sin PERT – PERT algorithm (Crashing excluded) – Related problems. **Chapter 25**

Unit -5: Sequencing Problem – n jobs through 2 machines – n jobs through 3 machines – n jobs through m machines. Graphical method. **Chapter 12: 12.1 – 12.6**

Recommended Text :

KanthiSwaroop, P.K. Gupta, Manmohan, Operations Research – Sultan Chand & sons (2021) reprint.

Reference Books:

1.P.K. Gupta and D. S. Hira, Operations Research, S. Chand & Co.

- 1. H.A. Taha, Operations Research Prentice Hall of India, New Delhi
- 2. *Sundaresan, Ganapathy Subramanian, Ganesan.*, Resource Management Technique Meenakshi Agency.

Website and e-Learning Source https://nptel.ac.in https://www.mathhelp.com/

Course outcomes: At the end of the course, students will be able to

CO1	Able to formulate linear programming problems and solve using
	Graphical, Simplex method.
CO2	Able to analyze and solve Transportation using appropriate method.
CO3	Able to analyze and solve Assignment problems and Game theory.
CO4	Able to design and solve Networks Models using CPM, PERT.
CO5	Estimate optimum solution for sequencing problems.

Mapping of Course Outcomes to Program Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3	3	2	1	2	3	2	2	2	3
CO2	2	3	2	1	2	3	3	3	3	2
CO3	3	3	1	2	1	3	2	3	2	3
CO4	3	3	3	3	2	3	3	3	3	3
CO5	3	2	3	2	3	3	2	3	3	2

1	Low	2 – Medium	3 – High
-	10.0		· · · · · · · · · · · · · · · · · · ·

Course Title: Core Paper XI: ARTIFICIAL INTELLIGENCE AND EXPERTSYSTEMS

Course Code:	Credits	03
	CIAMarks	:50
Exam Hours:03	ESEMarks	:50

CO1	To demonstrate knowledge of the building blocks of AI as presented in terms of intelligent agents. To impart the basic principles, techniques, and applications of Artificial Intelligence.
CO2	To create an understanding of the basic issues of knowledge representation. To analyze and formalize the problem as a state space, graph, design heuristics and select amongst different search or game based techniques to solve them
CO3	To impart basic proficiency in representing difficult real life problems in a state space representation so as to solve them using AI techniques like searching and game playing.
CO4	To apply basic principles of AI in solutions that require problem solving, inference, perception and learning.
CO5	To develop abilities to apply, build and modify decision models to solve real problems To explore the issues involved in the design and development of Artificial Intelligence Based Decision Support Systems and discuss the role these systems play in the business environment.

Mapping of Cours	e Outcomes	to Program	Specific	Outcomes:
-------------------------	------------	------------	----------	------------------

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3	2	3	3	3	3	3	3	3	3
CO2	3	2	3	3	2	3	3	3	3	3
CO3	3	3	3	2	3	3	3	2	3	3
CO4	3	3	3	3	2	3	3	3	2	3
CO5	3	3	3	3	3	3	3	3	3	3

3-Strong Correlation 2-Medium Correlation 1-Low Correlation

SI No.	Contents of Module	Hrs	COs
1	Introduction of Artificial Intelligence: Overview of Artificial Intelligence – Knowledge: General Concepts – Lisp and other AI Programming Languages.	10	CO1
2	Knowledge Representation– Formalized Symbolic logics – Dealing with Inconsistencies and Uncertainties – Probabilistic Reasoning - Structured Knowledge : Graphs, Frames and Related Structures – Object – Oriented Representations	10	CO2
3	Knowledge Organization and Manipulation: Search and Control Strategies – Matching Techniques – Knowledge Organization and Management	15	CO3
4	Perception and Communication: Natural Language Processing – Pattern Recognition – Visual Image Understanding.	15	CO4
5	Expert System Architectures: Rule-Based System Architectures – Nonproduction System Architectures – Dealing with Uncertainty – Knowledge Acquisition and Validation – Knowledge system Building Tools.	10	CO5

TEXT BOOK:

2. Dan W. Patterson," Introduction to Artificial Intelligence and Expert System", 2005, PHI Learning.

E- REFERENCES:

1. http://www.ddegjust.ac.in/studymaterial/mca-5/mca-402.pdf

SIXTH SEMESTER

Course Title: Linear Algebra

Course	B Sc (Maths)	Credits	04
Eugen Haung	02	CIA Marks	50
Exam Hours	03	ESE Marks	50

Course Objectives

Students will acquire knowledge about the Vector Spaces, Dual spaces, Inner product spaces and linear transformations.

COs	CONTENTS OF MODULE							
	UNIT-I: Vector spaces – Subspaces – Linear Combinations and Linear span –							
CO1	System of linear equations – Elementary Matrices							
	Chapter: 1 Sections:1.1–1.4							
	UNIT-II: Linear Dependence and Linear independence – Bases - Dimensions –							
	Homogenous Equations – Non-homogenous equations Row reduced – Echelon form.							
CO2	Chapter 1: Sections: 1.5, 1.6.,							
	Chapter 2: Section: 2.7							
	Chapter 3: Section 3.4							
	UNIT-III: Linear transforms, null spaces and ranges – Matrix representation of a							
CO3	linear transformation – Invertibility and isomorphisms – Dual spaces.							
	Chapter 2: Sections:2.1 –2.4 and 2.6.							
	UNIT – IV: Eigen values, Eigen vectors, Diagonalizability – Invariant subspaces –							
CO4	Cayley – Hamilton theorem.							
	Chapter 5: Sections: 5.1, 5.2 and 5.4.							
	UNIT-V: Inner Products Space: Inner Products and norms Gram-Schmidt							
COS	Orthogonalization Process – Orthogonal complements.							
	Chapter 6: Sections:6.1,6.2.							

Recommended Text:

Linear Algebra - Stephen H Friedberg, Arnold J Insel and Lawrence E Spence, 5 th edition (2018) Pearson

Reference Books:

- 1. Topics in Algebra, I.N. Herstein, Wiley EasternLtd. Second Edition, 2006.
- 2. University Algebra, N.S.Gopalakrishnan, New Age International Publications, Wiley Eastern Ltd.
- 3. First course in Algebra, John B.Fraleigh, Addison Wesley.
- 4. Linear Algebra and its Applications, David C. Lay, 3rd Ed., Pearson Education Asia, Indian Reprint, 2007.
- 5. Introduction to Linear Algebra, S. Lang, 2nd Ed., Springer, 2005.
- 6. Linear Algebra and its Applications, Gilbert Strang, Thomson, 2007.

Website and e-Learning Source

https://nptel.ac.in https://www.mathhelp.com/

Course Outcomes: At the end of the Course, the Student will be able to

CO1	A agains a detailed impossible as about vector appages and subspaces
COI	Acquire a detailed knowledge about vector spaces and subspaces
CO2	Explain the concepts of Linear Dependence, Linear Independence, Bases and Dimension of basis.
CO3	Explain the concept of Linear Transformations, their Matrix representation and the notion of dual spaces with an illustration.
CO4	Find the Eigen values and Eigen vectors, to apply the concepts for diagonalisation.
CO5	Explain about Inner product and norms and to apply Gram Schmidt Orthogonalization Process to problems on inner product spaces.

Mapping of Course Outcomes to Program Outcomes & Program Specific Outcomes:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PS02	PS03
CO1	3	3	2	1	1	2	2	3	3	2
CO2	3	3	2	1	1	2	2	3	2	3
CO3	3	3	1	1	1	2	1	3	1	2
CO4	3	3	1	1	1	2	1	2	2	2
CO5	3	2	1	2	1	2	2	3	2	2

1 Low 2 – Medium 3 – High

Course Title: Real Analysis II

Course	B.Sc Maths
Exam Hours	03

Credits	04			
CIA	50			
Marks	50			
ESE	50			
Marks	50			

Course objectives

- > To write clear and precise proof of theorems.
- > Introduce the concepts of Riemann integrable and properties of Riemann integrable.
- > To identify the correct theorems to deal with unknown problems.

CONTENTS OF MODULE

Unit I: Continuous Functions on Metric Spaces: Open sets- closed sets-Discontinuous function on R¹. Connectedness, Completeness and Compactness: More about open sets- Connected sets.

Chapter 5 Section 5.4 to 5.6

Chapter 6 Section 6.1 to 6.2

Unit II: Bounded sets and totally bounded sets -Complete metric spaces- compact metric spaces, continuous functions on a compact metric space, continuity of inverse functions, uniform continuity.

Chapter 6 Section 6.3 to 6.8

Unit III: Calculus: Sets of measure zero, definition of the Riemann integral, properties of Riemann integral.

Chapter 7 Section 7.1 to 7.4(omit 7.3)

Unit IV: Derivatives- Rolle's theorem, Law of mean, Fundamental theorems of calculus.

Chapter 7 Section 7.5 to 7.8

Unit V: Taylor's theorem- Pointwise convergence of sequences of functions, uniform convergence of sequences of functions. **Chapter 8 Section 8.5** Chapter 9 Section 9.1 and 9.2

Recommended Text Book:

Richard R. Goldberg. Methods of Real Analysis. Oxford and IBH Publishing Co)

Reference Books:

- 1. Principles of Mathematical Analysis by Walter Rudin, TataMcGrawHill.
- 2. Mathematical Analysis Tom M Apostal, Narosa Publishing House.

Course outcomes: At the end of the course, students will be able to

CO1	Examine the continuity of a functions via open and closed sets and give the definition of concepts related to metric spaces, such as continuity, compactness, completeness and connectedness							
CO2	Describe about bounded, unbounded sets and distinguish between compact and complete metric spaces.							
CO3	Determine the Riemann integrability of a bounded function, identify the size of a sets by outer measure andchoose the Riemann integral properties to find the value of the integrals.							
CO4	Demonstrate the usage of the Mean Value Theorem, Fundamental theorem of Calculus to problems in the context of real analysis and Roll's theorem, Mean value theorem for differentiable functions.							
CO5	Distinguish between point wise and uniform convergence of a sequence of functions and illustrate the effect of uniform convergence on the limit function with respect to continuity, differentiability, and integrability.							

Mapping of Course Outcomes to Program Outcomes and Program Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3	2	2	1	2	3	1	3	2	2
CO2	3	2	2	1	1	2	1	3	2	3
CO3	2	3	3	1	2	2	2	3	2	2
CO4	3	2	2	1	1	2	2	3	2	3
CO5	3	2	2	1	2	2	2	3	2	2

1 Low 2 – Medium 3 – High

Title of the Co	ourse			Comple	x Ana	lysis				
Paper Num	ber				XIV	•				
Category	Core	Year	III	Credits	4	Course				
		Semester	VI			Code				
Course (Dbiectiv	ve:				Coue				
E Errel		fundamental cons	ants of	the formation	na of o		able and their role			
			epts of t			complex van	able and then fole			
in me	odern n	hathematics and ap	oplied co	ontexts.						
> Dem	onstrate	e understanding of	analyti	c functions	and co	omplex integra	ation.			
> Calc	ulate se	ries expansions for	r comple	ex-valued f	unction	ns, evaluate co	ntour integrals and			
dofir	ita inta	arola	1				C			
dem	nie mie	grais.								
		Linit I								
		Analytic function	ns: Limi	ts –Limits	involvi	ing the point a	t infinity_Theorem			
		on limits –Contir	nuity – I	Derivatives	s – Dif	fferentiation f	ormulas – Cauchy			
		Riemann equatio	n – Su	fficient co	ondition	ns for differe	entiability – Polar			
		coordinates– Ana	lytic fun	ctions-Ex	kample	s - Harmonic f	functions.			
		Chapter 2- Section	ns- 15- 2	26						
Course Outlin		Unit II								
Course Outin	ie	Complex Integra	ation: C	Contour int	egrals	– Examples -	Upper bounds for			
		moduli of contou	ır integr	als – Sim	ply and	d Multiply co	nnected domains-			
		Cauchy integral f	ormula	– An exter	nsion o	of the Cauchy	integral formula –			
		some consequences of the extension – Liouville's theorem and Fundamental								
		Chapter 4 Sections 40.43.48.54 (omit 44.47)								
		Unit III								
		Series: Convergence of sequences – Convergence of series – Taylor series –								
		Examples- Laure	nt series	– Example	es- Ab	solute and uni	form convergence			
		of power Series.								
		Chapter 5- Sections: 55-63.								
		Unit IV								
		Residues and Poles: Isolated singular point – Residues – Cauchy Residue								
		neorem – residue at infinity – The three types of isolated singular points.								
		integrals from Fourier Analysis – Iordan's Lemma (statement only)								
		Definite integrals involving Sines and cosines–Simple examples.								
		Chapter 6- Sections: 68-72 Chapter 7 – Section 78-81,85 (omit 82-84)								
		Unit V								
		Mappings: Mappings – Mapping by exponential function – Mapping by								
		elementary function - Linear transformation – The transformation w= $1/z$								
		- Mappings by $1/z$ – Linear fractional transformations (bilinear) - An								
		Chapter 2- Section	ons: 13	14 Chapter	r 8- Sec	ctions: 90-94				
Contents	and	James Ward Brown	n and Rue	el V. Churc	hill, Co	mplex variables	s and application.			
treatment as i	n	8/e, Mc-Graw Hill	Book Co	ompany. (20	19)	I				

Reference Books	 Dennis G. Zill, Patrick D. Shanahan, Complex Analysis, 3/e Jones & Bartlett Learning.
	2. <u>Murray R. Spiegel, Seymour Lipschutz, John J. Schiller, Dennis</u> <u>Spellman</u> ,Schaum's outlines Complex Variables 2/e.
	 S.Arumugam, A.Thangapandi Isaac, & A.Somasundaram, Complex Analysis, New Scitech Publications (India) Pvt Ltd (Latest Edition)
	 B.S. Tyagi, Functions of A Complex Variable Kedarnath & Ramnath, Meerut (Latest Edition)
	 A.R. Vasishtha, Complex Analysis Krishna Prakashan Media Pvt. Ltd (Latest Edition)
	 J.N. Sharma, Functions of a Complex variable, Krishna Prakasan Media Pvt Ltd, (Latest Edition)
e-Resources:	 <u>http://ebooks.lpude.in.complexanalysis</u>. <u>https://nptel.ac.in</u>.

Course Outcomes: At the end of the Course, the Student will be able to

CO1	Solve problems on analytic and harmonic functions.
CO2	Outline proof of the theorems on complex integration.
CO3	Express functions as Taylor's and Laurent's series.
CO4	Apply the concepts of residues to evaluate some real improper integrals.
CO5	Construct mappings of exponential function and 1/z

Mapping of Course Outcomes to Program Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3	2	1	-	-	3	2	3	1	2
CO2	1	2	2	-	-	2	1	2	3	3
CO3	3	1	2	-	-	1	2	3	2	2
CO4	2	3	1	-	-	2	2	1	2	1
CO5	3	2	2	-	-	1	1	2	1	3

1	Low	2 – Medium	3 – High
			0

Course Title: Core Paper – XV Operating Systems

.....

Course Code :	Credits	
L:T:P:S :	CIA Marks	: 50
Exam Hours : 03	ESE Marks	: 50

Course Objective:

- > To state the services provided to the user and hardware by operating system.
- > To learn the mechanisms of OS to handle processes and threads and their communication.
- > To communicate with the process through system calls.
- > To define deadlocks and identify its presence in the system.
- > To design appropriate memory management scheme.
- > To explores various techniques of allocating memory to processes.
- > To discuss file system including access methods, file locking, and directory structures.
- > To describe the details of implementing local file systems and directory structures
- > To discuss the goals and principles of protection in a modern computer system.

Course Outcomes: At the end of the course, students will be able to

CO1	Describe the basic structure and functionality of operating system. Inter process communication.
CO2	Allocation of process through scheduling algorithms. Define critical section problems and its usage.
CO3	Prevention of multiple process execution through the concept of semaphores. Apply the deadlock handling mechanisms to solve the given problem. Understand various techniques of allocating memory to processes.
CO4	Understand the strategies of memory management schemes and the usage of virtual memory. Apply suitable page replacement algorithms to avoid thrashing. Understand the structure and organization of the file system
CO5	Understand the principles of protection and security mechanisms

Mapping of Course Outcomes to Program Outcomes:

	PO	PO	PO	PO4	PO5	PO	PO	PS	PS	PS
	1	2	3			6	7	01	02	03
CO1	2	2	2			2	2	2	2	2
CO2	2	3	2			1	2	1	2	2
CO3	2	2	1			2	2	2	3	2
CO4	1	2	2			2	3	3	2	3
CO5	3	2	3			2	2	2	2	2

3-Strong Correlation 2- Medium Correlation 1- Low Correlation

S.NO	CONTENTS OF MODULE	Hrs	COs
1.	Unit 1 Introduction: Views-Types of system- OS Structure-Operations-Services-Interface- system calls -system structure-system design and implementation process management ;process -process scheduling-inter process communication. CPU scheduling; CPU schedulers-Scheduling criteria-scheduling algorithm	12	CO1
2.	Unit 2 Process Synchronization: Critical-Section Problem Synchronization Hardware Semaphores-Classical Problems of Synchronization Monitors. Deadlocks: Characterization- Methods for Handling Deadlocks Deadlock Prevention- Avoidance-Detection-Recovery.	12	CO2
3.	Unit 3 Memory Management: Hardware- Address Binding–Address Space Dynamic Loading and Linking– Swapping – Contiguous Allocation-Segmentation - Paging– Structure of the Page Table.	11	CO3
4.	Unit 4 Virtual Memory Management: Demand Paging- Page Replacement Algorithms- Thrashing. File System: File Concept Access Methods-Directory and Disk Structure- Protection-File System Structures-Allocation Methods-Free Space Management.	15	CO4
5.	Unit 5 I/O Systems: Overview- I/O Hardware- Application I/O Interface-Kernel I/O Subsystem-Transforming I/O Requests to Hardware Operations- Performance. System Protection: Goals-Domain-Access matrix. System Security: The Security Problem- Threats–Encryption- User Authentication.	10	C05

TEXT BOOK:

Abraham Silberschatz, Peter B Galvin, Gerg Gagne, "*Operating System Concepts*", Wiley India Pvt.Ltd. 2018, 9thEdition.

Reference books:

1. William Stallings, "Operating Systems Internals and Design Principles", Pearson, 2018, 9th Edition.

Andrew S. Tanenbaum, Herbert Bos, "Modern Operating Systems", Pearson 2014, 4th Edition.

Course Title: Elective Paper V: WEB DESIGN

Course Code:	Credits	03
	CIAMarks	:50
Exam Hours:03	ESEMarks	:50

CO1	To Demonstrate Internet Basic concepts and Internet Domains To Study about Internet Server Identities To impart the concepts of Establishing Connectivity on the Internet.
CO2	To classify the HTML Tags. To impart Lists, Frames and Table To the Forms and Forms Elements.
CO3	To elaborate DHTML Style Sheets and Element of the Style. To impart Linking a style sheet to a html documents and Web page designing.
CO4	Representation of Java Script Data types, Control and Looping and Functions. To point out the knowledge about the Dialog Boxes.
CO5	Representation of JavaScript Document Object Model and Event Handling. To point out Form object, User Defined Object and Cookies.

Mapping of Course Outcomes to Program Specific Outcomes:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	2	3	2	3	3	2	3	2	3	3
CO2	3	3	2	3	2	3	3	3	2	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	2	3	3	2	3

S. NO	Contents of Module	Hrs	COs
1	Internet: Basic Concepts – Communicating on Internet – Internet Domains – Internet Server Identities – Establishing Connectivity on the Internet	10	CO1
2	Introduction to HTML -Anchor Tag – Hyperlink – Head and Body Section – Heading – Horizontal Ruler – Paragraphs–Tags- Images and Picture–Lists–Tables– Frames – Forms and forms elements.	10	CO2
3	DHTML and Style sheets – Defining styles- Elements of style – Linking a style sheet to a html documents-Inline style-External style sheets – Multiple styles – Webpage designing.	15	CO3
4	Introduction to Javascript – Advantage of JavaScript – Data type – Variable– Array -Operator and Expression – Control and looping Constructs – Functions – Dialog Boxes.	15	CO4
5	JavaScript Document Object Model – Event Handling - Form Object – Built in Object – User Defined Object Cookies.	10	CO5

Text Books:

1. Ivan Bayross, —Web Enabled Commercial Application DevelopmentusingHTML, JavaScript, DHTML and PHPI, Fourth Edition, BPB Publications, 2010

References:

1.HarveyM.Deitel,PaulJ.Deitel,TemR.Nieto,—Internet&WorldWide Web-Howtoprogram^I,ThirdEdition,PrenticeHall, 2002.

E-References:

http://books.google.co.in/books?id=BrASwbtAGGUC&pg=PA69&source=gbs_selected_pag es&cad=2#v=onepage&q&f=fals

Practical Paper V Web Design Lab

Course Code:

Credits - 2

CourseObjectives:

To apply the Java concepts through various applications and to develop a web page.

LabExercises:

- 1. Program for HTML page to demonstrate the usage of List Tags.
- 2. Program for HTML page to demonstrate the usage of Table Tags.
- 3. Program for HTML page to demonstrate theusage of Frames.
- 4. Program to illustrate hyperlink using Mouse Over event.
- 5. Program to create a document which opens a new window without a toolbar, address bar or astatus bar that unloads itself after oneminute
- 6. Program using CSS.
- 7. Program using arrays.
- 8. Program using Operatorsandexpressions.
- 9. Program using Functions and dialog boxes

COURSES OFFERED TO OTHER DEPARTMENTS

FIRSTSEMESTER

(SYLLABUS)

Course Title: Allied Mathematics-I

(For I year Students of B. Sc (Computer Science) and B. Sc (Physics with CA)

.....

Course Code	: 2036106	Credits	: 05
L:T:P:S	: 5:0:0:0	CIA Marks	: 40
Exam Hours	: 03	ESE Marks	: 60

LEARNING OBJECTIVES:

On taking this course the student will be able to identify the various operations and properties of matrices, acquire knowledge of circular, hyperbolic, and inverse trigonometric functions. Obtain an insight into Laplace transform, and Inverse Laplace transforms.

Course Outcomes: At the end of the Course, the Student will be able to:

CO1	Classify different types of matrices and their properties, using characteristic polynomial to find Eigen values & Eigen vectors, verify the square matrix satisfies its characteristic polynomial, compute inverse of the matrix using Cayley Hamilton theorem.
CO2	Use Demoivre's theorem to expand $\sin\theta$ and $\cos\theta$, express $\sin^n\theta$, $\cos^n\theta$ in multiples of θ and also can express hyperbolic functions in terms of exponential functions and obtain hyperbolic identities, manipulate expressions involving hyperbolic functions.
CO3	Express inverse trigonometric functions in terms of logarithmic functions, Separate the real and imaginary parts of trigonometric functions of complex variables, evaluate integration using Bernoulli's formula and reduction formula and formulate Fourier series of a given periodic function by evaluating the Fourier coefficients.
CO4	Find partial derivatives of given function, classify maxima and minima of the function of two variables, calculate partial derivatives using Jacobian and Evaluate curvature& radius of curvature in Cartesian form.
CO5	Demonstrate about the Laplace transforms and inverse Laplace transforms of standard functions, solve second order differential equations using Laplace transform and inverse Laplace transform.

CO/PO/PSO				РО					PSO				
	1	2	3	4	5	6	7	8	1	2	3	4	5
CO 1	3	3	3	3	3	2	2	2	3	3	3	3	3
CO 2	3	3	2	3	3	2	2	2	3	3	3	3	3
CO 3	3	3	2	3	3	2	2	2	3	3	3	3	2
CO 4	3	3	3	3	3	3	2	2	3	3	3	3	2
CO 5	3	3	3	3	3	3	2	2	3	3	3	3	2

Mapping of Course Outcomes to Program Outcomes:

3-Strong Correlation 2- Medium Correlation 1- Low Correlation

S.	CONTENTS OF MODULE	Hrs	COs
INO			
1	MATRICES: Symmetric,skew-symmetric,orthogonal and unitary matrices, eigen values and eigen-vectors (Diagonalization excluded), Cayley-Hamilton theorem (statement only)- verification of Cayley-Hamilton theorem-computation if inverse matrix using Cayley- Hamilton theorem.	15	CO 1
2	TRIGONOMMETRY: Expansion of $\cos n\theta$, $\sin n\theta$ (where n is a positive integer) – Expansion of $\cos^n \theta$, $\sin^n \theta$ in a series of sines and cosines of multiples of θ , Hyperbolic functions- Relations between hyperbolic functions.	15	CO 2
3	TRIGONOMETRY: Inverse hyperbolic function $\sinh^{-1}x$, $\cosh^{-1}x$ and $\tanh^{-1}x$ in terms of logarithmic functions separation into real and imaginary parts of $\sin(x+iy)$, $\cos(x+iy)$, and $\tan^{-1}(x+iy)$, -simple problems. INTEGRAL CALCULUS- Bernoulli's formula, reduction formula - $\int_{0}^{\frac{\pi}{2}} \sin^{n}x dx \int_{0}^{\frac{\pi}{2}} \cos^{n}x dx \int_{0}^{\frac{\pi}{2}} \sin^{m}x \cos^{n}x dx$ (m,n being positive integer). FOURIER SERIES – Fourier series for functions in $(0, 2\pi)$	15	CO 3
4	DIFFERENTIAL CALCULUS: Jacobians, curvature and radius of curvature in Cartesian coordinates, maxima and minima of functions of two variables-Simple problems.	15	CO 4
5	LAPLACE TRANSFORMS: Laplace transforms of standard functions. Laplace transform of e ^{-at} f(t), tf(t), f(t)/t. Inverse Laplace transforms- Application to solution linear differential equations of second order with constant coefficients- simple problems.	15	CO 5

TEXT BOOKS:

Recommended Text books:

- 1. S.Narayanan, R.Hanumantha Rao, T.K.Manickavachagam Pillay, *Ancillary Mathematics Volume I*, S.Viswanathan Pvt., Ltd, Reprint.
- 2. S.Narayanan, R.Hanumantha Rao, T.K.Manickavachagam Pillay, *Ancillary Mathematics Volume II*, S.Viswanathan Pvt., Ltd, Reprint

Unit I	Vol I	Chapter 3 - Pages 121-124; Pages 128-132; Pages 151-160
Unit II	Vol I	Chapter 5 - §5.1 ,5.2 Pages 220-232; §5.4 Pages 242-247
Unit III	Vol II	Chapter 5 - § 5.4 Pages 247-253
		Chapter 1 - § 13.3 Pages 75-82; §15 Pages 93-94
		Chapter 2 - § 1 to §5.5 pages 123-132
Unit IV	Vol I	Chapter 6 - § 6.2,6.4,6.5 Pages 282-285; 298-301; 318-325
Unit V	Vol II	Chapter 7 – Pages 289-311 (Omit solution of simultaneous differential equations)

Reference books:

- 1. P.Duraipandian, Dr.S.Udhayabhaskaran, Allied mathematics Volume I, Muhil publishers.
- 2. P.Duraipandian, Dr.S.Udhayabhaskaran, Allied mathematics Volume II, Muhil publishers.
- 3. P.Kandasamy, K.Thilagavathy, Allied mathematics Volume I, S.Chand& Company.
- 4. P.Kandasamy, K.Thilagavathy, Allied mathematics Volume II, S.Chand& Company.
- 5. Dr.S.P.Rajagopalan, Dr.R.Sattanathan, Allied mathematics, Tata McGraw hill publishers.

SECONDSEMESTER

(SYLLABUS)

Course Title: Allied Mathematics-II (For I year Students of B. Sc Physics with CA)

.....

Course Code	: 2036109	Credits	: 05
L:T:P:S	: 5:0:0:0	CIA Marks	: 40
Exam Hours	: 03	ESE Marks	: 60

LEARNING OBJECTIVES:

On taking this course the student will be able to understand the techniques to find the roots of polynomial equations, estimate the numerical value of a function from a given set of values by using appropriate methods, And also can attain the basic knowledge in partial differentiation vector differentiation, Vector integration and its applications.

Course Outcomes: At the end of the Course, the Student will be able to:

CO1	Summarize the basic ideas about algebraic equations, determine the roots of polynomial equations, Identify the symmetric function and transform the polynomial equations by either increasing or decreasing the roots by a constant.
CO2	Estimate the intermediate value of a function whose table values are known at equal intervals by Newton's forward and backward interpolation method, find the missing term in the table of values using binomial expansion and compute the intermediate value for a function whose table values are unequal intervals.
CO3	Recall the concept of partial differentiation, explain the formation of Partial differential equation, classify the different type of solutions of PDE and enhance the problem-solving skills for any PDE and point out the method to be used for solving PDE.
CO4	Retrieve the idea of multiplication of vectors in two ways (dot and cross product) with its properties, interpret the derivative of a vector, manipulate differential operator to a vector in both dot and cross product and summarize the properties of differential operators when applied to vectors.
CO5	Recall the vector operators, apply critical thinking and problem solving skills to evaluate line, surface and volume integrals and relate the line, surface and volume integrals by gauss, stokes and Greens theorem.

Mapping of Course Outcomes to Program Outcomes:

CO/PO/PSO		РО							PSO				
	1	2	3	4	5	6	7	8	1	2	3	4	5
CO 1	3	3	3	3	3	3	3	2	3	3	3	3	3
CO 2	2	2	2	3	3	3	3	2	3	3	3	3	3
CO 3	3	3	2	3	3	3	2	2	3	3	2	2	2
CO 4	3	3	2	3	3	3	2	2	3	3	2	2	2
CO 5	3	3	3	3	3	3	2	2	3	3	3	3	2

3-Strong Correlation 2- Medium Correlation 1- Low Correlation

S.No	CONTENTS OF MODULE	Hrs	COs
1	Theory of Equations: Solving Polynomial equations with imaginary and		GO 4
	irrational roots in A.P and G.P, Diminishing of roots, Reciprocal equations –	12	CO 1
	simple problems.		
2	Interpolation: Newton's forward and backward interpolation formula for equal		
	intervals, Binomial method for missing terms with equal intervals, Lagrange's	12	CO 2
	interpolation formula.		
3	Partial Differential Equations : Formation , Complete integrals and general		
	integrals , four standard types $f(p,q) = 0$, $f(x,p,q) = 0$, $f(y,p,q)=0$,	12	CO 3
	f(z,p,q)=0, f(x,p) = f(y,q); Clairaut's form and Lagrange's equation $Pp + Qq = R$.		
4	Vector Differentiation: Level Surfaces – the vector differential operator,	12	CO 4
	gradient, divergence, curl, solenoidal and irrotational vectors.		00.
5	Vector Integration: Line, surface and volume integrals; Gauss, Stokes's	12	CO5
	theorem (statement only)– Simple problems.		000

TEXT BOOKS:

Recommended Text Book:

1.S.Narayanan, R.Hanumantha Rao, T.K.ManicavachagamPiilai, *Ancillary Mathematics Volume I*, S.Viswanathan Pvt. Ltd, Reprint.

2. S.Narayanan, R.Hanumantha Rao, T.K.ManicavachagamPiilai, *Ancillary Mathematics Volume II*, S.Viswanathan Pvt. Ltd, Reprint

Unit I	VolI Chapter 2 – Sections 2.1 to 2.4; pages 59 -83.
Unit II	VolI Chapter 4 - Sections 4.1 to 4.3; pages 183 – 214.
Unit III	Vol II Chapter 6 - Sections 1 to 3 pages 262 – 273
Unit IV	Vol II Chapter 8 -Sections 15 to 20 pages335 – 351
Unit V	Vol II Chapter 8 -Sections 1 to 2 pages 363 – 414

[*Derivations are not included and only applications are to be expected from the students]

Reference Books:

- 1. P. Duraipandian, S.Udaybakaran, Allied Mathematics Volumes I, Muhil publishers.
- 2. P. Duraipandian, S.Udaybakaran, Allied Mathematics Volumes II, Muhil publishers.
- 3. P.Kandasamy, K.Thilagavathy, Allied Mathematics Volumes I, S.Chand& company.
- 4. P.Kandasamy, K.Thilagavathy, Allied Mathematics Volumes II, S.Chand& company.
- 5. Dr.S.P.Rajagopalan and Dr.R.Sattanathan, Allied Mathematics, Tata McGraw hill publishers.

SECOND SEMESTER

(SYLLABUS)

Course Title: Allied Mathematics-II (For I year Students of B. Sc Computer Science)

.....

Course Code	: 2036218	Credits	: 05
L:T:P:S	: 5:0:0:0	CIA Marks	: 40
Exam Hours	: 03	ESE Marks	: 60

LEARNING OBJECTIVES:

On taking this course the student will be able to know about various methods to find the roots of the polynomial equations and understand the numerical methods of solving non-linear equations, interpolation, Numerical differentiation and integration.

Course Outcomes: At the end of the Course, the Student will be able to:

CO1	Explain the relation between roots and coefficients, solve the polynomial equations using imaginary and irrational roots, generate equation using reciprocal roots and use diminishing of roots to transform an equation.
CO2	Define least square method, examine the best fit for a line or curve and explain about interpolating the data. Calculate the dependent variable $f(x)$ at any point of x and solve problems using the interpolation methods for equal intervals.
CO3	Discuss about the concept of divided difference, solve the problems with unequal intervals and interpolate the value, and use inverse interpolation to find the independent variable x for given values of $f(x)$.
CO4	Use numerical differentiation to find the value of derivative of a function, discuss the various methods of numerical integration and estimate the given function in an interval.
CO5	Define algebraic and transcendental equations, explain about iteration method and use various methods of solving algebraic and transcendental equations.

Mapping of Course Outcomes to Program Outcomes:

CO/PO/PSO				P	PSO								
	1	2	3	4	5	6	7	8	1	2	3	4	5
CO 1	3	3	3	3	3	2	2	2	3	3	2	3	2
CO 2	3	3	2	3	3	2	2	2	3	3	2	3	2
CO 3	2	3	2	3	3	2	2	2	3	3	3	3	3
CO 4	2	3	3	3	3	2	2	2	3	3	3	3	3
CO 5	3	2	3	3	3	2	2	2	3	3	3	3	3

3-Strong Correlation 2- Medium Correlation 1- Low Correlation

S.No	CONTENTS OF MODULE	Hrs	COs
1	Theory of equations: Relation between the roots and the coefficients of $f(x)=0$, Solving polynomial equations with imaginary and irrational roots – To form equations whose roots are reciprocals-Reciprocal equations, Diminishing of roots – simple problems	12	CO1
2	Curve Fitting: By least squares method only – Fitting of straight line and parabolic curve Interpolation: Newton's forward and backward interpolation formula, Stirling's central difference formula	12	CO2
3	Interpolation with unequal intervals: Divided differences, Newton's divided difference formula for interpolation and Lagrange's formula for interpolation, Inverse interpolation using Lagrange's method	12	CO3
4	 Numerical differentiation: Derivatives using Newton's forward and backward difference formulae, Stirling's formula and Divided difference formula (Maxima and minima not included) Numerical integration: Trapezoidal formula, Simpson's one-third rule and three eighth rule (Romberg's method and applications are not included) 	12	CO4
5	Solutions of Algebraic and Transcendental Equations: Bisection method, Iteration method, Regular falsi method, Newton Raphson method (Convergence and rate of convergence not included) and Horner's method	12	CO5

TEXT BOOKS:

Recommended Text book:

M.K.Venkatraman, *Numerical methods in Science and Engineering*. The National publishing company, Fifth edition, 1999.

Unit I	Chapter II - § 1 to §4; § 7 to §10 Pages 53-63,69-80
Unit II	Chapter I - § 1.7 and §1.8
	Chapter VI - § 1 to § 5
	Chapter VII - § 5 Pages 26-30,34-39,193-208,225-226
Unit III	Chapter VIII - § 1 to § 5 Pages 244-263
Unit IV	Chapter IX - § 1 to § 4 (Omit maxima and minima) § 8 to § 11 Pages 265-278, 281-293
Unit V	Chapter III - § 1 to § 6 Pages 81-112

Reference books:

- 1. P.Kandasamy, K.Thilagavathy&K.Gunavathy, *Numerical methods*, S.Chand& Company.
- 2. S.Arumugam, A.Thangapandi Isaac &A.Somasundaram, *Numerical methods*, Scitech publications.
- 3. T.Veerarajan and T.Ramachandran, *Numerical methods with programming in C*, Tata McGraw hill publishers.

FIRST SEMESTER (SYLLABUS)

Course Title: Mathematical Foundations (For I year students of BCA)

.....

Course Code	: 2036107	Credits	: 05
L:T:P:S	:5:0:0:0	CIA Marks	: 40
Exam Hours	: 03	ESE Marks	: 60

LEARNING OBJECTIVES:

On taking this course the student will be able to obtain problem solving skills in matrices and its application, gain logical thinking and use of appropriate methods to solve the problems, To think analytically and have better reasoning abilities, To apply the logic theory to practical situation To analyze the statement using truth table. To apply the concept of derivatives and integrals.

Course Outcomes: At the end of the Course, the Student will be able to

C01	Retrieve the concept of matrix and perceive the idea of finding inverse by using Cayley - Hamilton theorem. Solving linear equations by using matrix method and determinant method.(Cramer's Rule)
CO2	Define Proposition Summarize the concept of types of proposition, negation, disjunction, Conjunction, conditional, by conditional. Prepare tautologies and contradictions. Explain logical equivalence Summarize converse, inverse and contra positive propositions, arguments and validity of arguments.
CO3	Attaining the knowledge of finding operations on sets and Cartesian product of sets. Prepare a Venn-diagram Identify number of elements of sets Summarize the concepts of domain, range, Equivalence relations, partially and totally ordered sets List types of functions and Composition of function.
CO4	Recall the concept of derivatives of simple function using sum, product, quotient rules, function of function rule, logarithmic differentiation, Implicit of functions, Parametric differentiation. Solve problems on successive differentiation.
CO5	Identify the rules of integration. Discover integration by substitution method, integration by parts, and Bernoulli's formula.

CO/PO/PSO				P	PSO								
	1	2	3	4	5	6	7	8	1	2	3	4	5
CO 1	3	3	2	2	3	2	2	2	3	3	3	3	2
CO 2	3	3	3	3	3	2	2	2	3	3	3	3	2
CO 3	3	2	3	3	3	2	3	2	3	3	3	3	2
CO 4	2	3	3	3	3	2	2	3	3	3	3	3	2
CO 5	3	3	3	3	3	2	2	2	3	3	3	3	2

Mapping of Course Outcomes to Program Outcomes:

3-Strong Correlation 2- Medium Correlation 1- Low Correlation

S. No.	CONTENTS OF MODULE	Hrs	COs
1	Matrices: Introduction – Basic properties – Symmetric, Skew Symmetric- Hermitian, Skew Hermitian – Orthogonal – Unitary Matrices, Inverse of a Matrix- Rank of Matrix – Solving system of linear equations by Matrix method – Determinants – Properties- Cramer rule.	12	CO1
2	Mathematical logic : Proposition- Definition – Types of propositions – Negation – Disjunction – Conjunction – Conditional – Bi-condition – Tautologies and contradictions – Logical equivalence – algebra of propositions – converse, inverse and contra positive proposition – arguments and validity of arguments.	12	CO2
3	Sets: Operation on sets, Venn diagram, number of elements in a set, Cartesian product. Relations: Domain and range of a relation, Equivalence relation, partially and totally ordered sets – simple problems. Functions – Types of functions, compositionof functions – simple problems.(Theorems excluded).	12	CO3
4	Differentiation – derivatives of simple functions using sum, product, quotient rules – Functions of function rule – logarithmic differentiation – Differentiation of implicit function – parametric differentiation – successive differentiation (upto third derivative) – simple problems	12	CO4
5	Integration – Rules of Integration – Integration by substitution (using algebraic functions) – Integration by parts – Bernoulli's formula.	12	CO5

TEXT BOOKS:

Recommended Text Book:

1. P. R. Vittal: Mathematical foundations., Margham publication-

Reference Books:

- 1. M. K. Venkataramanan: *Discrete Mathematics*, National Publishing company.
- 2. M. K. Venkataramanan: *Engineering Mathematics*, National Publishing company.

SECOND SEMESTER (SYLLABUS)

Course Title: STATISTICAL METHODS (For I year students of BCA)

.....

Course Code	: 2036216	Credits	: 05
L:T:P:S	:5:0:0:0	CIA Marks	: 40
Exam Hours	: 03	ESE Marks	: 60

LEARNING OBJECTIVES:

On taking this course the student will be able to obtain problem solving skills in Measures of central tendency, gain logical thinking and use of appropriate methods to solve the problems, To demonstrate knowledge on applications of statistics in business operations. Experience the use of statistical tools to make scientific decisions in uncertain business environment. To develop computational skills needed in competitive examinations.

Course Outcomes: At the end of the Course, the Student will be able to

CO1	Retrieve the concept of Arithmetic mean, median, mode geometric mean and harmonic mean combined mean, weighted mean-Simple problems.
CO2	Determine the Range, Quartile deviation, mean deviation, standard deviation, combined standard deviation, coefficient variation. Measures of skewness :Karl Pearson's, Bowley's coefficient of skewness. Simple problems.
CO3	Attaining the knowledge of finding Karl Pearson, Spearman's rank correlation method and Lines of regression.
CO4	Recall the concept of ProbabilitySample space-Events-probability-Addition and multiplication theorem and Conditional probability. Application of Baye's theorem. Solving problems using Baye's Theorem
CO5	Identify the Time series and Meaning of time series, definitions and uses Components of time series and Methods of measuring trends.

Mapping of Course Outcomes to Program Outcomes:

CO/PO/PSO		РО									PSO					
	1	2	3	4	5	6	7	8	1	2	3	4	5			
CO 1	3	2	3	3	3	2	2	2	3	3	3	3	2			
CO 2	3	3	3	2	3	2	2	2	3	3	3	3	2			
CO 3	2	3	3	3	3	2	2	2	3	3	3	3	2			
CO 4	3	3	3	3	3	2	2	2	3	3	3	3	2			
CO 5	3	3	2	3	3	2	2	2	3	3	3	3	2			

3-Strong Correlation 2- Medium Correlation 1- Low Correlation

S. No.	CONTENTS OF MODULE	Hrs	COs
1	Measures of central tendency : Arithmetic mean, median, mode geometric mean and harmonic mean combined mean, weighted mean-Simple problems.	12	CO1
2	Measures of dispersion: Range, Quartile deviation, mean deviation, standard deviation, combined standard deviation, coefficient variation. Measures of skewness :Karl Pearson's, Bowley's coefficient of skewness.Simple problems.	12	CO2
3	Correlation: Karl Pearson, spearman's rank correlation method. Regression: Lines of regression.	12	CO3
4	Probability: Sample space-Events-probability-Addition and multiplication theorem-Conditional probability-Baye'stheorem(statement only)-Simple problems.	12	CO4
5	Time series -Meaning –definitions-uses-Components of time series – Methods of measuring trends.	12	CO5

TEXT BOOKS:

Recommended Text Book:

Dr.S.P.Rajagopalan, R.Sattanathan, Business statistics and Operations ResearchTATAMcgraw Hill

Reference Books:

Dr.P.R.Vittal, Business Statistics, Margham Publishers.

FIRST SEMESTER (SYLLABUS)

Course Title: Business Mathematics - I (For I year students of B.Com. (A&F)

.....

Course Code : 20	036106	Credit	ts	: 05
L: T:P:S : 5:	:0:0:0	CIA Marks	: 40	
Exam Hours : 03	3	ESE Marks	: 60	

LEARNING OBJECTIVES:

On taking this course the student will be able to attain solid foundation for preparing to Competitive exams, Acquire skills in calculating specific business mathematics applications such as checking accounts, payroll, taxes, invoices, cash discounts, trade discounts, inventories, simple and compound interest, annuities, depreciations, and financial statements.

Course Outcomes: At the end of the Course, the Student will be able to:

CO1	Restate the definition of sets. Differentiate the elements and sets. Demonstrate relation and functions of sets.
CO2	Define the term ratio.Demonstrate the importance of proportions.Solve the problems on ratios, proportion and variance.
CO3	Distinguish between permutation and combination. Solve the problems on binomial theorem. Summarize the concepts of exponential and logarithmic series.
CO4	Define the term interest.Explain the difference between Simple interest and Compound interest.Calculate the future and present values of Annuities.Point out the important term of banker's discount.
CO5	Distinguish between H.C.F & L.C.M of numbers.Demonstrate the importance of Average and Percentage.Solve real-life problems based on time & work.

Mapping of Course Outcomes to Program Outcomes:

CO/PO/PSO				P	PSO								
	1	2	3	4	5	6	7	8	1	2	3	4	5
CO 1	2	1	1	1	3	3	3	3	3	3	2	3	2
CO 2	2	2	1	1	2	3	3	3	1	3	3	3	3
CO 3	2	2	1	1	2	3	3	3	1	1	2	2	2
CO 4	2	2	2	2	3	3	3	3	1	1	2	3	3
CO 5	3	3	3	3	3	3	3	3	3	3	3	3	3

3-Strong Correlation 2- Medium Correlation 1- Low Correlation

S.No	CONTENTS OF MODULE	Hrs	COs
1	Set theory: Definition, Elements and types of sets, Operations on sets,	10	COL
	Relations and functions of sets.	12	COI
2	Algebra: Ratio, proportion and variance	12	CO2
3	Permutation and combination: permutation and combination, binomial	12	CO3
	theorem, exponential and logarithmic series.		000
4	Interest and annuity: Simple interest, Compound interest and Annuities-	12	CO4
	Discount on bills-Payroll-Wages-commission.	12	004
5	Quantitative Aptitude: Operations on Numbers-H.C.F. & L.C.M. of		
	Numbers- Average-Percentage - Time & Work - Time & Distance-Odd Man	12	CO5
	Out & Series.		

TEXT BOOKS:

Recommended Text Book:

2. Dr. P. R. Vittal, (2017), Business Mathematics, Margham Publications

Module		CHAPTERS
Ι	Chapter	1
Π	Chapters	2,3
III	Chapters	8,9,10
IV	Chapters	17,18,19,21

2. Dr. R. S. Aggarwal (2017), Quantitative aptitude, S. Chand & Company limited. Revised Edition

Module		CHAPTERS
V	Section 1	1,2,6,10,15,17,35

Reference Books:

- 1. Dr. S. P. Rajagopalan, Dr. R. Sattanathan (2014), *Business Mathematics*, Vijay Nicole Imprints private limited.
- 2. D. C. Sancheti, V. K. Kapoor (2014), Business Mathematics, Sulthan Chand & Sons.

SECOND SEMESTER

(SYLLABUS)

Course Title: Business Mathematics II (For I year students of B.Com. (A & F)

.....

Course Code	: 2036215	Credits	: 05
L:T:P:S	: 5:0:0:0	CIA Marks : 40	
Exam Hours	: 03	ESE Marks : 60	

Course objectives:

On taking this Course, the student will be able to develop the Analytical reasoning skills and attain proficiency in problem solving and quantitative aptitude. To understand the plane analytical geometry concepts, to demonstrate the applications of co-ordinate system, to prepare business mathematics model for any given real life situation through survey.

Course Outcomes: At the end of the Course, the Student will be able to

CO1	Restate the definition of plane analytical geometry. Demonstrate the Cartesian co-ordinate system. Demonstrate gradient of straight line.
CO2	Distinguish between arithmetic mean and geometric mean. Solve the problem on arithmetic mean and harmonic mean.
CO3	Define the term interpolation. Explain the concept of binomial method. Judge and classify the concepts of Newton and Lagrange interpolation method).
CO4	Define the term matrix. Point out the important term of matrix inversion, solution to linear equation.
CO5	Understand the difference between rational and irrational numbers and perform operations with Surds and Indices. Calculate the profit and loss of a real-life problem. Find the ratio between two or more ingredients at their respective prices

Mapping of Course Outcomes to Program Outcomes:

CO/PO/PSO	РО							PSO					
	1	2	3	4	5	6	7	8	1	2	3	4	5
CO 1	3	3	3	3	2	3	3	3	3	3	3	3	2
CO 2	3	3	3	3	3	3	2	3	3	3	3	2	2
CO 3	3	3	3	2	3	3	3	3	3	3	3	3	3
CO 4	3	3	3	3	3	2	3	3	3	3	3	3	2
CO 5	3	3	3	2	3	3	2	3	3	3	3	3	3
S. No.	CONTENTS OF MODULE	Hrs	COs										
--------	--	-----	-----										
1	Set theory : Plane analytical geometry –Cartesian co-ordinate system, length of a line segment, section formula(ratio)-gradient of a straight line, equation of a straight line.	12	CO1										
2	Algebra : Arithmetic, geometric and harmonic progressions.	12	CO2										
3	Interpolation: Binomial, Newton and Lagrange's method.	12	CO3										
4	Matrices: Matrices- Meaning and operations, matrix inversion, solution to linear equation-payroll wages and commission.	12	CO4										
5	Quantitate Aptitude: Surds & Indices-Profit&Loss-Pipes & Cistern-Alligation or Mixture-Calendar-Clocks.	12	CO5										

TEXT BOOKS:

Recommended Text Book:

1. Dr.P.R. Vittal, Business Mathematics, Margham Publications.

Module		CHAPTERS
Ι	Chapter	12
II	Chapters	7
III	Chapters	22
IV	Chapters	14

2. Dr. R. S. Aggarwal, (2017) *Quantitative Aptitude*, S. Chand & Company Ltd., (Revised edition)

Module		CHAPTERS
V	Section 1	9,11,16,20,27 and28

Reference Books:

- 1. Dr.S. P. Rajagopalan, Dr. R. Sattanathan, *Business Mathematics*, Vijay Nichole Imprints private limited.
- 2. D. .C. Sanchetti, V.K. Kapoor(2014), Business Mathematics, Sultan Chand & Sons.

THIRD SEMESTER

(SYLLABUS)

Course Title: Business Statistics and Operations Research – I For II year Students of B.Com, (General) &B.Com,(A/F)

.....

Course Code : 2036327	Credits	: 05
L:T:P:S : 5:0:0:0	CIA Marks	: 40
Exam Hours : 03	ESE Marks	: 60

LEARNING OBJECTIVES:

On taking this course the student will be able to demonstrate knowledge of the statistical distributions. Demonstrate knowledge on applications of statistics in business operations. Compute and interpret correlation and regression analysis. Demonstrate the knowledge of applying linear programming to solve real life applications. Represent a real time problem using Network Diagram and find its critical path

Course Outcomes: At the end of the Course, the Student will be able to:

CO1	Explain about classification and tabulation of statistical data. Plot the diagrammatic and graphical representation of data
CO2	Explain about central tendency and calculate various measures. Explain how mean, median, mode are related in symmetric and skew symmetric distributions. Explain about dispersion and calculate various measures. Estimate the coefficient of variation using standard deviation. Investigate the uniformity or consistency of a data using coefficient of variation. Interpret the concept of skewness and methods to calculate its coefficient
CO3	Define correlation and its types. Calculate and interpret correlation between two variables. Apply regression equations to estimate the values of unknown variable using the given data. Rank the given data and examine the rank correlation
CO4	Define the nature and features of operations research. Explain the term various terms in LPP. Formulate and model a linear programming problem. Solve an LPP using graphical and simplex method. Identify a feasible solution and optimal solution using simplex method
CO5	Explain basic components of network analysis and critical path. Define CPM and PERT. Construct the network using CPM and PERT techniques to plan, schedule and control project activities

CO/PO/PSO		РО								PSO			
	1	2	3	4	5	6	7	8	1	2	3	4	
CO 1	2	3	3	3	3	3	2	3	3	3	3	2	
CO 2	2	3	3	3	3	3	2	3	3	3	3	2	
CO 3	2	3	3	3	3	3	2	3	3	3	3	2	
CO 4	2	3	3	3	3	3	2	3	3	3	3	2	
CO 5	2	3	3	3	3	3	2	3	3	3	3	2	

3-Strong Correlation 2- Medium Correlation 1- Low Correlation

S.No	CONTENTS OF MODULE	Hrs	COs
1	Introduction – Classification and Tabulation of statistical data – Diagrammatic and graphical representation of data	12	CO1
2	Measures of central tendency : Arithmetic mean ,median, mode Measures of dispersion : Range , Quartile deviation, Mean deviation, Standard deviation , Measures of Skewness – simple problems	12	CO2
3	Correlation: Karl Pearson'scoefficient of correlation, Spearman's rank correlation, Regression Lines and Coefficients.	12	CO3
4	Introduction to OR – Linear Programming Formulation _ Graphical and Simplex method to solve LPP with all constraints less than or equal to type only (simple problems)	12	CO4
5	Network Analysis – PERT and CPM(no crashing)	12	CO5

TEXT BOOKS:

Recommended Text Book:

- 1. Dr. P.R. Vittal, Business Statisticsand Operations Research, Margham publications
- 2. Dr. S.P. Rajagopalan& Dr. R. Sattanathan. *Business Statisticsand Operations Research* Tata MeGraw Hill Publications
- 3. S.P. Gupta: Statistical Methods, Sultan 2000.

Reference Books:

- 1. Dr.S.P.Gupta, Statistical Methods, S.Chand
- 2. Gupta and Hira, Operations Research, S.Chand.
- 3. Handy and A.Taha, Operations Research, Macmillan Publishers

FOURTH SEMESTER

(SYLLABUS)

Course Title: Business Statistics and Operations Research – II For II year Students of B.Com, (General) &B.Com,(A/F)

.....

Course Code	: 2036435	Credits	: 05
L:T:P:S	: 5:0:0:0	CIA Marks	: 40
Exam Hours	: 03	ESE Marks	: 60

LEARNING OBJECTIVES:

On taking this course the student will be able to demonstrate knowledge on applications of statistics in business operations. Experience the use of statistical tools to make scientific decisions in

S. No	CONTENTS OF MODULE	Hrs.	COS
-------	--------------------	------	-----

uncertain business environment. Tosolve the real time industrial problems using transportation model and Assignment model. Find the optimum allocation of number of jobs to equal number of facilities.

Course Outcomes: At the end of the Course, the Student will be able to

CO1	Explain the term time seriesClassify the various components of time seriesAnalyze the seasonal and cyclical pattern in series of time.
CO2	Interpret indices to identify trends in a data set. Construct simple and weighted price, quantity and value indices. Use the consumer price index to determine the purchasing power
CO3	Explain basic probability axioms and rules. Calculate probabilities by using addition and multiplication law, with the terms independent and mutually exclusive events. Apply Baye's Theorem to solve real world events
CO4	Explain the Transportation problem and formulate it as LPP and solve the problemDetermine that an assignment problem is a special case of LPP and evaluate using Hungarian Method
CO5	Define various terms and rules used in the Theory of Games. Identify strategic situations and represent them as games. Compute general solution of m x n rectangular games. Demonstrate graphical solution for m x 2 and 2 x n games

1	Time series analysis – Trend – Seasonal Variation – Cyclical Variation	12	CO1
2	Index numbers – Aggregate and Relative index – Chain and Fixed index - Wholesale index- Cost of living index	12	CO2
3	Probability – Addition and Multiplication theorem – Conditional probability – Baye's Theorem (without proof) – Simple problems	12	CO3
4	Assignment and Transportation problem	12	CO4
5	Game theory – Games with saddle – Dominance – Graphical Method	12	CO5

CO/PO/PSO		PO								PSO			
	1	2	3	4	5	6	7	8	1	2	3	4	
CO 1	2	3	3	3	3	3	2	3	3	3	3	2	
CO 2	2	3	3	3	3	3	2	3	3	3	3	2	
CO 3	2	3	3	3	3	3	2	3	3	3	3	2	
CO 4	2	3	3	3	3	3	2	3	3	3	3	2	
CO 5	2	3	3	3	3	3	2	3	3	3	3	2	

3-Strong Correlation 2- Medium Correlation 1- Low Correlation

TEXT BOOKS:

Recommended Text Book:

- 1. Dr. P.R. Vittal, Business Statistics and Operations Research, Margham publications
- 2. Dr.S.P.Rajagopalan ,R.Sattanthan, *Business Statistics & Operations Research*, Margham Publications.

Reference Books

- 1. Dr.S.P.Gupta, Statistical Methods, S.Chand
- 2. Gupta and Hira, *Operations Research*, S.Chand.
- 3. Handy and A.Taha, Operations Research, Macmillan Publishers

THIRD SEMESTER

(SYLLABUS)

Course Title: Business Mathematics (For II year students of BBA)

Course Code	: 2036326	Credits	: 05
L:T:P:S	: 5:0:0:0	CIA Marks	: 40
Exam Hours	: 03	ESE Marks	: 60

LEARNING OBJECTIVES:

On taking this Course, the student will be able to develop the Analytical reasoning skills and attain proficiency in problem solving. To understand the plane analytical geometry concepts, to demonstrate the applications of co-ordinate system, To summarize the arithmetic progression, Geometric progression and Harmonic progression with illustrations. To discuss the applications of differential calculus, matrices and interest calculation on real time situations through secondary data

Course Outcomes: At the end of the Course, the Student will be able to:

CO1	Summarize the concept of Arithmetic progression- nth term of an AP, sum to n terms of an AP, Geometric progression- nth term of a GP, sum to n terms of GP						
CO2	Summarize the concept of straight line-length of line segment, section formula, gradient of slope of line, various forms of equation of straight line-simple problems						
CO3	Summarize the concept of Differentiation- product rule, quotient rule, applications- Average cost, Marginal cost, Marginal revenue, elasticity, maxima and minima, point of inflection						
CO4	Summarize the concept of matrices, addition, subtraction, multiplication of matrices, transpose, matrix inversion and solution to system of linear equation						
CO5	Summarize the concept of simple interest and compound interest, Annuities- amount of annuity, freehold estate and leasehold estate, sinking fund, Amortization, Discount.						

Mapping	of Course	Outcomes	to Program	Outcomes:
---------	-----------	----------	------------	------------------

CO/PO/PSO		РО								PSO			
	1	2	3	4	5	6	7	8	1	2	3	4	5
CO 1	3	3	3	3	3	2	2	2	3	3	3	3	2
CO 2	3	3	3	3	3	2	2	2	3	3	3	2	2
CO 3	3	3	3	3	3	2	2	2	3	3	3	3	2
CO 4	3	3	3	3	3	2	2	2	3	3	3	2	2
CO 5	3	3	3	3	3	2	2	2	3	3	3	3	2

3-Strong Correlation 2- Medium Correlation 1- Low Correlation

S.No	CONTENTS OF MODULE	Hrs	COS
1	Progression –.Arithmetic progression- nth term of an AP, sum to n terms of an AP, Geometric progression- nth term of a GP, sum to n terms of GP	12	CO1
2	Plane analytical geometry: straight line-length of line segment, section formula, gradient of slope of line, various forms of equation of straight line-simple problems	12	CO2
3	Differential calculus: Differentiation- product rule, quotient rule, applications- Average cost, Marginal cost, Marginal revenue, elasticity, maxima and minima, point of inflection	12	CO3
4	Matrices: addition, subtraction, multiplication of matrices, transpose, matrix inversion and solution to system of linear equation	12	CO4
5	Mathematics of finance simple interest and compound interest, Annuities- amount of annuity, freehold estate and leasehold estate, sinking fund, Amortization, Discount	12	CO5

Recommended Text Book:

P.R.Vittal, Business Mathematics, Margham Publications, Chennai.

Reference Book:

Dr.S.P.Rajagopalan, Business Mathematics, Tata Mcgrawhill, Chennai.

FOURTH SEMESTER

(SYLLABUS)

Course Title: Operations Research (For II year students of BBA)

.....

Course Code	: 2036434	Credits	: 05
L:T:P:S	: 5:0:0:0	CIA Marks	: 40
Exam Hours	: 03	ESE Marks	: 60

LEARNING OBJECTIVES:

On taking this course the student will be able to apply quantitative methods and techniques for effective decision making. Demonstrate the knowledge of applying linear programming to solve real life applications. To prepare a network for a given project and identify the critical path of the project

Course Outcomes: At the end of the Course, the Student will be able to

CO1	List the concepts and scope of Operations Research, Formulate general mathematical model of Linear Programming problem. Solve the LPP of graphical method
CO2	Summarize the transportation model. Compute initial basic feasible solution under the methods of northwest corner rule, row minima, column minima, least cost method and Vogel's approximation method. Solve the transportation model using Vogel's approximation method.
CO3	Distinguish the assignment problem of types balanced and unbalanced problem and also minimization and maximization problems.Solve assignment problem under Hungarian method Summarize the sequencing problem of processing of n jobs through m machines.
CO4	Judge the network problems. Produce the optimal solution by Critical Path Method and PERT computations
CO5	Define the game theory problems. Solve the problems based on pure and mixed strategies, dominance method and graphical method.

Mapping of Course Outcomes to Program Outcomes:

CO/PO/PSO		РО								PSO				
	1	2	3	4	5	6	7	8	1	2	3	4	5	
CO 1	3	3	3	3	3	3	3	2	3	3	3	3	3	
CO 2	3	3	3	3	3	3	3	2	3	3	3	3	3	
CO 3	3	3	3	3	3	3	3	2	3	3	3	3	3	
CO 4	3	3	3	3	3	3	3	2	3	3	3	3	3	
CO 5	3	3	3	3	3	3	3	2	3	3	3	3	3	

3-Strong Correlation 2- Medium Correlation 1- Low Correlation

S.No	CONTENTS OF MODULE	Hrs	COS
1	Linear Programming problem- Concept and scope of OR, general mathematical model of LPP, steps of LP model formulation, graphical method of the solution of LPP-Simple problems	12	CO1
2	Transportation Problem - Basic definitions, formulation of transportation problem as LPP, Finding initial basic feasible solution-North west corner rule, the row minima, column minima, least cost method and Vogel's approximation methods-optimum solution	12	CO2
3	 Assignment problem-Hungarian method – Minimization and maximization- unbalanced assignment problem Sequencing problem: Processing of n jobs through 2 machines-Processing of n jobs through 3 machines-Processing each of n jobs through m machines 	12	CO3
4	PERT and CPM-difference between PERT and CPM- constructing Network- Critical Path, various floats-PERT computations.	12	CO4
5	Game theory- Maximin-minmax criterion, saddle point, dominance property, graphical method for solving 2xn and mx2 game	12	CO5

Recommended Text Book:

P.R.Vittal& Malini, Operations Research, Margham Publications.2007

Chapter 1	Chapter 2 & Chapter 3
Chapter 2	Chapter 10
Chapter 3	Chapter 11 & Chapter 12
Chapter 4	Chapter 14
Chapter 5	Chapter 15

REFERENCE BOOKS:

- **1**. Sundaresan, Ganapathy Subramanian, Ganesan, *Resource Management Technique*, A.R. Publications.
- 2. P. K. Gupta and Manmohan, Operations Research, S. Chand & Company

FIRST SEMESTER

(SYLLABUS)

Course Title: Business Statistics (For I year students of BBM)

.....

Course Code	: 2036108	Credits	: 05
L:T:P:S	: 5:0:0:0	CIA Marks	: 40
Exam Hours	: 03	ESE Marks	: 60

LEARNING OBJECTIVES:

On taking this Course, the student will be able to develop comprehensive understanding of statistical distributions. the ability to perform data analysis. Demonstrate knowledge on applications of statistics in business operations. Compute and interpret correlation and regression analysis.

Course Outcomes: At the end of the Course, the Student will be able to:

CO1	Summarize the concept of mean, median and mode and able to solve problems in mean. median and mode .
CO2	Summarize the concept of mean deviation, standard deviation, quartile deviation and range and able to solve problem in mean deviation, standard deviation, quartile deviation and range
CO3	Summarize the concept ofkarlpearsons coefficient of skewness- Bowleys coefficient of skewness and kurtosis and able to solve simple problem in karlpearsons coefficient of skewness- Bowleyscoefficient of skewness and kurtosis
CO4	Summarize the concept of karlpearsons coefficient of correlation, spearmans rank, correlation coefficient, regression analysis and regression equations and able to solve the problem in Karlpearsons coefficient of correlation, Spearmans rank, correlation coefficient, regression analysis and regression equations
CO5	Summarize the concept of index numbers- methods of constructing index numbers -Laspeyres method, paasches method, fishers method, bowleys method, Marshalledge-worth method, unit test-time reversal test and factor reversal test and able to solve problem in Laspeyres method, Paasches method, fishers method, bowleys method, marshalledgeworth method, unit test-time reversal test and factor revearsal test

CO/PO/PSO		РО									PSO					
	1	2	3	4	5	6	7	8	1	2	3	4	5			
CO 1	3	3	3	3	3	2	2	2	3	3	3	3	2			
CO 2	3	3	3	3	3	2	2	2	3	3	3	3	2			
CO 3	3	3	3	3	3	2	2	2	3	3	3	3	2			
CO 4	3	3	3	3	3	2	2	2	3	3	3	3	2			
CO 5	3	3	3	3	3	2	2	2	3	3	3	3	2			

3-Strong Correlation 2- Medium Correlation 1- Low Correlation

S.No	CONTENTS OF MODULE	Hrs	COs
1	Measures of averagesArithmetic mean-Weighted mean-Combined mean-	10	GO1
	Median Mode- Geometric mean- Harmonic mean- Simple problems.	12	COI
2	Mesures of dispersionsRange -quartiledeviation- mean deviation- standard	12	CO2
	deviation combined standard deviation-coefficient of variation-simple problems.	14	0.02
3	Skewness karlpearsons coefficient of skewness- Bowleys coefficient of	10	CO3
	skewness and kurtosis-simple problems	14	
4	karlpearsons coefficient of correlation, spearmans rank, correlation coefficient,	10	COA
	regression analysis and regression equations-simple problems.	14	CO4
5	Index numbers - methods of constructing index numbers -Laspeyres method,		
	paasches method, fishers method, bowleys method, marshalledgeworth method,	12	CO5
	unit test-time revearsal test and factor revearsal test		

TEXT BOOKS:

Recommended Text Book:

- 1. Dr. P.R. Vittal, Business Statisticsand Operations Research, Margham publications
- 2. Dr. S.P. Rajagopalan& Dr. R. Sattanathan. *Business Statisticsand Operations Research* Tata MeGraw Hill Publications
- 3. S.P. Gupta: *Statistical Methods*, Sultan 2000.

Reference Books:

4. Dr.S.P.Gupta, Statistical Methods, S.Chand

SECOND SEMESTER

(SYLLABUS)

Course Title: Operations Research (For I year students of BBM)

.....

Course Code	: 2036217	Credits	: 05
L:T:P:S	: 5:0:0:0	CIA Marks	: 40
Exam Hours	: 03	ESE Marks	: 60

LEARNING OBJECTIVES:

On taking this course the student will be able to apply quantitative methods and techniques for effective decision making. Demonstrate the knowledge of applying linear programming to solve real life applications. To prepare a network for a given project and identify the critical path of the project

Course Outcomes: At the end of the Course, the Student will be able to

CO1	Deal with history of operations research and introduce linear programming problem. Determine theoptimality of the objective function of a linear programming problems
CO2	Determine the schedule for transporting goods from source to destination in a way
	which will minimize the shipping cost while satisfying supply and demand constraints
CO3	Assign a number of jobs to an equal number of machine so as to minimize the total time
	required for successful execution of all the jobs
CO4	Demonstrate pure and mixed strategy and saddle point of a game. Explain the concept of
04	fair game.Complete the job in maximum possible time, keeping the minimal idle time of
	the machine
CO5	Schedule, organize and coordinate tasks within a particular project by using the activities
005	of the project (PERT)Determine the project completion time and the critical path of the
	project

CO/PO/PSO		РО									PSO					
	1	2	3	4	5	6	7	8	1	2	3	4	5			
CO 1	3	3	3	3	3	3	3	2	3	3	3	3	3			
CO 2	3	3	3	3	3	3	3	2	3	3	3	3	3			
CO 3	3	3	3	3	3	3	3	2	3	3	3	3	3			
CO 4	3	3	3	3	3	3	3	2	3	3	3	3	3			
CO 5	3	3	3	3	3	3	3	2	3	3	3	3	3			

3-Strong Correlation 2- Medium Correlation 1- Low Correlation

S.No	CONTENTS OF MODULE	Hrs.	COS
1	Operations Research Definition- Scope limitations Linear ProgrammingProblem(LPP)- Formation of LPP-Graphical method-simple problems.	12	CO1
2	Transportation model-Balanced and Unbalanced Transportation problems – Initialbasic feasible solution- North west corner rule, the row minima ,column minima,least cost method and Vogel's approximation methods - Optimum solution-MODI method.	12	CO2
3	Assignment Problem- Balanced and Unbalanced Maximization restricted assignment problem. (Excluding travelling salesman Minimization andproblem).	12	CO3
4	Game Theory - Pure & Mixed Strategies- Dominance-Graphical method. Sequencing problem: Processing of n jobs through 2 machines- Processing of n jobs through 3 machines- Processing each of n jobs through m machines.(Excluding Processing 2 jobs through m machines)	12	CO4
5	PERT- Project Network diagram- PERT computations.	12	CO5

TEXT BOOKS:

Recommended Text Book:

- 1. Dr. P.R.Vittal, Business Statisticsand Operations Research, Margham publications
- 2. Dr. S.P. Rajagopalan& Dr. R. Sattanathan. *Business Statisticsand Operations Research* Tata MeGraw Hill Publications

Reference Books:

- 1. Gupta and Hira, Operations Research, S.Chand.
- 2. Handy and A.Taha, Operations Research, Macmillan Publishers