

DWARAKA DOSS GOVERDHAN DOSS VAISHNAV COLLEGE (Autonomous)

College with Potential for Excellence Linguistic Minority Institution. Affiliated to University of Madras

POST GRADUATE AND RESEARCH DEPARTMENT OF MATHEMATICS

B.Sc. Mathematics (MPC & MAN)

CURRICULUM AND SCHEME OF EXAMINATIONS
Choice Based Credit System (CBCS)
&
Outcome Based Education (OBE)

(with Effect from the Academic Year 2024-2025)

1. PREAMBLE

The curriculum of B.Sc. Mathematics is structured in a way that the students acquire in-depth knowledgeto perceive the principles of the core. Basics in Algebra, Calculus, Analytical Geometry, Differential Equations and Transform Techniques are covered exclusively to prepare the students to proceed to the next level of Higher Mathematics of Linear Algebra, Real and Complex Analysis, Mechanics. A list of varied electives namely, Operations Research, Graph Theory, Number Theory, Mathematical Modelling, Programming with Python are furnished to bridge between the Main and Applied Mathematics. The comprehensive curriculum design yields an excellent career opportunity in Research, Education, Public and Private Sectors, Business sectors, Banking, IT Industries and in every domain of contemporaries.

2. PROGRAM LEARNING OUTCOMES

The comprehensive course outline enables the students to enhance Computational skills and Mathematical reasoning. The program develops the ability to think critically, logically and analytically thereby preparing the students to enhanced career opportunities in Industries, Commerce, Education and Research.

NATURE AND EXTENT OF BACHELOR'S DEGREE PROGRAMME

Mathematics is the culmination of in-depth of knowledge of Algebra, Calculus, Differential equations and several other branches of Mathematics. This also leads to selected areas like Computer science and Statistics. Mathematics is a diverse discipline that deals with data, measurement and observations from science, with inference, deduction and proof and with mathematical models of naturalphenomena of human behaviour and of social systems.

AIMS OF BACHELOR'S DEGREE PROGRAMME IN MATHEMATICS

The overall aim of B.Sc. Mathematics is to

- develop broad and balanced knowledge and understanding of definitions, concepts, principles and theorems.
- enhance the ability of learners to apply the knowledge and skills acquired by themduring the programme to solve specific theoretical and applied problems in mathematics.
- provide students/learners sufficient knowledge and skills enabling them toundertakefurther studies in mathematics and its allied areas on multiple disciplines concerned with mathematics.

GRADUATE ATTRIBUTES IN MATHEMATICS

The graduate attributes in mathematics are mentioned in the expected course learning outcomes of each course which provides critical thinking, analytical reasoning, problem solving and research related skills etc,.

POST GRADUATE AND RESEARCH DEPARTMENT OF MATHEMATICS

VISION

- To promote and support a comprehensive, innovative and dynamic learning environment
- To assist students in acquiring a conceptual understanding of the nature and structure of mathematics its processes and applications.

MISSION

• To establish an atmosphere of creative endeavor that supports interdisciplinary collaborations, innovative projects, significant research and informal discussions that mutually benefit students, faculty and community at large.

PROGRAM OUTCOME FOR UNDER GRADUATE

At the end of the programme the student will be able:

PO1	To participate in various types of employment, development activities and public discourses particularly in response to the needs of the community one serves
PO2	To understand the need and have the competencies to support local, regional and national development
PO3	To develop critical and analytical thinking
PO4	To develop conceptual understanding , problem solving and application of skills
PO5	To provoke entrepreneurship among the students along with strong ethics and communication skills
PO6	To develop a questioning mind in diverse environments for better outcomes
PO7	To engage in lifelong learning and enduring proficient progress

Program Specific Outcomes (PSO)

At the end of the program, the student will be able to:

PSO	Program Specific Outcomes (PSO)
PSO1	Mathematical Thinking: Acquire abstract mathematical thinking and the capability of developing ideas based on them.
PSO2	Career: Practice mathematical tasks, tools, representation and methods for industry and entrepreneurial pursuit.
PSO3	Creativity: Develop quest for mathematics and prepare for higher learning.

Curriculum and scheme of Examination under CBCS and OBE (Applicable to the students admitted during the Academic Year 2024-2025 and Onwards)

FIRST SEMESTER

Course Content	Name of the Course	Ins. Hrs	Credits	Int. Marks	Ext.Marks	Total
Part - I	Language Paper -I	5	3	50	50	100
Part - II	English Paper -I	4	3	50	50	100
Part - III	Core Paper-I: Algebra and Trigonometry	5	4	50	50	100
	Core Paper-II: Differential Calculus	4	4	50	50	100
	Allied Paper- I: Physics – I/Financial Accounting	9	5	50	50	100
Part - IV	Basic Tamil/Adv. Tamil/Non Major Elective -I	2	2	50	50	100
	Soft Skills -I	2	3	50	50	100

SECOND SEMESTER

Course Content	Name of the Course	Ins. Hrs	Credits	Int. Marks	Ext.Marks	Total
Part - I	Language Paper -II	5	3	50	50	100
Part - II	English Paper -II	5	3	50	50	100
Part - III	Core Paper-III: Analytical Geometry	4	4	50	50	100
	Core Paper-IV: Integral Calculus and Vector Analysis	5	4	50	50	100
	Allied Paper- II: Physics – II/Cost and Management	9	5	50	50	100
	Accounting					
Part - IV	Basic Tamil/Adv.	2	2	50	50	100
	Tamil/Non Major		<i>_</i>	50	30	100
	Elective -II					
	Soft Skills -II	2	3	50	50	100

THIRD SEMESTER

Course Content	Name of the Course	Ins. Hrs	Credits	Int. Marks	Ext.Marks	Total
Part - I	Language Paper -III	5	3	50	50	100
Part - II	English Paper -III	5	3	50	50	100
Part - III	Core Paper-V: Differential Equations	5	4	50	50	100
	Core Paper-VI: Elementary Number Theory	4	4	50	50	100
	Allied Paper- III : Chemistry – I/ Probability and Statistics-I	9	5	50	50	100
Part - IV	Environmental Studies	1		EXAM SEME		IE IV
	Soft Skills -III	2	3	50	50	100
	Extra disciplinary		1			

FOURTH SEMESTER

Course Content	Name of the Course	Ins. Hrs	Credits	Int. Marks	Ext.Marks	Total
Part - I	Language Paper -IV	5	3	50	50	100
Part - II	English Paper -IV	5	3	50	50	100
Part - III	Core Paper-VII: Integral Transform	4	4	50	50	100
	Core Paper-VIII: Discrete Mathematics	5	4	50	50	100
	Allied Paper- IV : Chemistry – II/ Probability and Statistics-II	9	5	50	50	100
Part - IV				50	50	
	Environmental Studies	1	2	50	50	100
	Soft Skills -IV	2	3	50	50	100
	Value added course					
	Extra disciplinary		1			

FIFTH SEMESTER

Course Content	Name of the Course	Ins. Hrs	Credits	Int. Marks	Ext.Marks	Total
Part - III	Core Paper-IX: Algebraic Structures	6	4	50	60	100
	Core Paper -X: Real Analysis-I	6	4	50	50	100
	Core Paper-XI: Mechanics	6	4	50	50	100
	Core Paper – XII: Operations Research	6	4	50	50	100
	Elective Paper -I: Programming in Python With Practicals -I (Theory) (Skill Enhancement Course)	4	3	50	50	100
	Practical Paper 1: Programming in Python Lab- I	2	2	50	50	100
Part - IV						
	Value Education		2	50	50	100
	Internship		1			
	Value added course					

SIXTH SEMESTER

Course Content	Name of the Course	Ins. Hrs	Credits	Int. Marks	Ext.Marks	Total
Part - III	Core Paper-XIII: Linear Algebra	6	4	50	60	100
	Core Paper -XIV: Real Analysis-II	6	4	50	50	100
	Core Paper-XV: Complex Analysis	6	4	50	50	100
	Elective Paper -II: Programming in Python With Practicals - II (Theory) (Skill Enhancement Course)	4	3	50	50	100
	Practical Paper – II :Programming in Python Lab -II	2	2	50	50	100
	Elective Paper -III: Graph Theory and its Applications (Skill Enhancement Course)	5	3	50	50	100
Part – V	Extension Activity		1			
	Project	1	1			

List of Allied Papers

Group -A

- Probability and Statistics I
- Numerical Methods I

Group -B

- Probability and Statistics- II
- Numerical Methods- II

List of Elective Subjects

Group - A

- 1. Programming In Python With Practicals I
- 2. Mathematical Modeling.
- 3. Special Functions
- 4. Machine learning with R

Group - B

- 1. Graph Theory and Its Applications
- 2.. Mathematical Statistics with R
- 3. Programming In Python With Practicals II
- 4. Tropical Linear Algebra.

Extra Disciplinary Course:

- Predictive Modelling with R (practicals)
- Numerical Methods
- Mathematics for competitive examinations & general studies

Value Added Course:

- Data Analytics
- LateX
- Neural Networks and Algorithm
- Aptitude training

Tally Table:

Subject	No. of Subjects	Total Marks	credits
Core – Theory Papers	15	1500	60
Elective Papers(Theory)	3	300	9
Practical Paper	2	200	4
Allied Papers	4	400	20
Language	4	400	12
English	4	400	12
Soft skills	4	400	12
Non Major electives/ Basic Tamil	2	200	4
Environmental Science	1	100	2
Value Education	1	100	2
Internship	1		1
Project	1		1
Value added course	2		-
Extension Activity	1	100	1
Extra disciplinary paper	2		2
Grand Total		4100	142

- A field trip will be undertaken in second year.
 Industrial Visit relevant to the course will be undertaken in final year.

Components of Continuous Internal Assessment

Components		Marks	Total
	T	heory	
CIA I	50		
CIA II	50	30	
Generic	Activity	15	50
Attenda	ance	5	

Question paper pattern for End Semester Examinations

Knowledge Level	Section	Marks
K1	Section A Answer all the 10 Questions.	10x2 = 20 Marks
K2	Section B Answer all the 5 Questions (Each unit 2 questionseither or pattern)	5x7 =35Marks
K3 and K4	Section C Q.No.16 is compulsory. Remaining two questions either or pattern.	3x15 = 45 Marks
	Total	100 Marks

Question Paper pattern for Continuous Assessment Test, Modes of assessment for

Generic activityand Value added course :

CIA Tests -I	Multiple choice questions			
	Descriptive: Section A:	$7 \times 2 = 14$		
	(Answer any 7 out of 10)			
	Section B:	$3 \times 7 = 21$		
CIA- II	(Answer any 3 out of 5)			
	Section C:	$1 \times 15 = 15$		
	(Answer any 1 out of 3)			
	Total -	50 marks		
Generic	Conducting Seminars or Micro projects of			
Activity	discussion or Problem solving or Assign	nments.		
Project	Internal Viva-voce			
Extra disciplinary	Conducting Group discussion or Paper P	resentation or Seminars or		
	viva-voce.			
Value Added	Conducting Group discussion or Paper Presentation or			
Course	Seminars or viva-voce.			

Title of the Cour	ALGEBRA AND TRIGONOMETRY							
Paper Number		I						
Catana	Core	Year	I	G . 1'4	4	C		
Category	Semester	I	Credits	4	Course			
						Code		

Objectives of the Course

- Basic ideas on the Theory of Equations, Matrices and Number Theory.
- Knowledge to find expansions of trigonometry functions, solve theoretical and applied problems.

Unit 1

Reciprocal equations – Standard form-Increasing or Decreasing the roots of the given equation -Removal of terms-Approximate solutions of roots of polynomials by Horner's method-Related Problems.

Chapter 6: Sections: 16, 16.1,17, 19,30

Unit 2

Summation of Series: Binomial-Exponential-Logarithmic series (Theorems without proof)-Related Problems. Chapter -3: Sections: 10 Chapter-4: Sections: 3 to 7

Course Outline

Unit 3

Characteristic equation- Eigen values & EigenVectors-Similar matrices- Cayley - Hamilton Theorem(Statement only)-Finding powers of square

Theorem(Statement only)-Finding powers of square matrix-Inverse of a square matrix up to order 3-Diagonalization of square matrices-Related Problems.

Chapter 2: Sections:16,16.1 to 16.4

Unit 4

Expansions of $\sin n\theta$, $\cos n\theta$ in powers of $\sin \theta$, $\cos \theta$ – Expansions of $\tan n\theta$ interms of $\tan \theta$ - Expansions of $\cos^n \theta$, $\sin^n \theta$, $\cos^m \theta \sin^n \theta$ - Expansions of $\tan (\theta 1 + \theta 2 + ... + \theta n)$ – Expansions of $\sin \theta$, $\cos \theta$ and $\tan \theta$ in terms of θ –Related Problems.

Chapter 2:Sections: 2.1, 2.1.1, 2.1.2

Chapter 3: Sections:3.1,3.1.1,3.2.1,3.4,3.4.1 to 3.4.3

Unit 5

Hyperbolic functions-Relation between circular and hyperbolic functions- Formulas in hyperbolic functions – Inverse hyperbolic functions-Logarithm of complex quantities, Summation of Trigonometric series – Related problems.

Chapter 4: Sections: 4.1 to 4.7. Chapter 5: Sections: 5.1 to 5.3 Chapter 6: Sections: 6.1 to 6.6

	1. Algebra, Volume I by T. K. Manicavachagam Pillay,
	T.Natarajan,. K.S.Ganapathy, Viswanathan Publication
	2007.Unit – 1 and 2.
	2. Algebra, Volume II by T. K. Manicavachagom Pillay
Contents and	,T.Natarajan ,K.S.Ganapathy, ViswanathanPublication
treatment as in	2008.Unit – 3.
	3. Trigonometry by P. Duraipandian and
	KayalalPachaiyappa, Muhil Publishers, Unit-
	4,Unit-5
	1. W.S. Burnstine and A.W. Panton, Theory of equations 2.
	David C. Lay, Linear Algebra and its Applications, 3rd Ed.,
Reference Books	Pearson Education Asia, Indian Reprint, 2007
Titlerence Booms	3. G.B. Thomas and R.L. Finney, Calculus, 9th Ed.,
	PearsonEducation, Delhi, 2005
	4. C. V. Durell and A. Robson, Advanced Trigonometry,
	Courier Corporation, 2003
	•
	5.J. Stewart, L. Redlin, and S. Watson, Algebra and
	Trigonometry, Cengage Learning, 2012.
	6. Calculus and Analytical Geometry, G.B. Thomas and R. L.
	Finny, Pearson Publication, 9th Edition, 2010.
	1. http://mathworld.wolfram.com
e-Resources	2. http://www.themathpage.com/
	3. http://mathworld.wolfram.com
	4. http://ocw.mit.edu/courses/mathematics/

Course Outcomes: At the end of the course, the Student will be able to

CO1	Classify and Solve reciprocal equations
CO2	Find the sum of binomial, exponential and logarithmic series
CO2	Find Eigen values, eigen vectors, verify Cayley – Hamilton theorem and
CO3	diagonalize a given matrix
	Expand the powers and multiples of trigonometric functions in terms of sine and
CO4	cosine
CO5	Determine relationship between circular and hyperbolic functions and the summation of trigonometric series

Mapping of Course Outcomes to Program Outcomes and Program Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3	2	3	1	2	2	2	3	2	1
CO2	3	3	2	2	1	2	2	2	3	2
CO3	2	2	3	2	3	2	2	1	2	2
CO4	3	2	1	2	2	2	1	3	2	2
CO5	3	2	3	2	2	2	1	3	2	2

1 - Low 2 - Medium 3 - High

Title of the Cour	DIFFERENTIAL CALCULUS							
Paper Number		II						
Catana			I	C . 14	4	Comman		
Category Core		Semester	I	Credits	4	Course		
					Code			

Course Objectives

- To develop the ability to use Leibnitz Rule
- > To know about the method to find the maxima and minima
- > To develop the skills of the students in the area of Curvature
- > To learn methods and techniques of finding asymptotes.

CONTENTS OF MODULE

UNIT – **I**: Successive differentiation - n th derivative- standard results – Trigonometrical transformation – formation of equations using derivatives - Leibnitz's theorem and its applications

Chapter 3 section 1.1 to 1.6, 2.1 and 2.2

UNIT-II: Total differential of a function – special cases – implicit functions - partial derivatives of a function of two functions - Maxima and Minima of functions of two variables- Lagrange's method of undetermined multipliers.

Chapter 8 : Section 1.3 to 1.5 and 1.7, Section 4, 4.1 and 5.

UNIT- III: Envelopes – method of finding envelopes – Curvature- circle, radius and centre of curvature- Cartesian formula for radius of curvature – coordinates of the centre of curvature – evolute- and involute - radius of curvature and centre of curvature in polar coordinates – p-r equation

Chapter 10 Section 1.1 to 1.4 and Section 2.1 to 2.7

UNIT-IV: Polar coordinates - angle between the radius vector and the tangent - slope of the tangent in the polar coordinates – the angle of intersection of two curves in polar coordinates - polar sub tangent and polarsub normal – the length of arc in polar coordinates. Chapter 9 Section 4.1 to 4.6

UNIT-V: Definition-Asymptotes parallel to the axes – special cases – another method for finding asymptotes -asymptotes by inspection – intersection of a curve with an asymptote.

Chapter 11 - Section 1 to 7.

Recommended Text Book:

1. "Calculus", Volume - 1 by S. Narayanan and T.K. Manicavachagompillay S.Viswanathan publishers – 2006.

Reference Books:

- 1. Calculus, Dr. P.R. Vittal & Dr. V. Malini, Margham Publications, Chennai.
- 2. Calculus by Thomas and Fenny, Pearson Publication. Calculus by Stewart
- 3. Introduction to Calculus and Analysis ,R. Courant and F. John, (Volumes I & II), Springer- Verlag, New York, Inc., 1989.
- 4. Calculus T. Apostol Volume I and II.
- 5. Calculus and mathematical analysis, S. Goldberg.

Website and e-Learning Source

https://nptel.ac.in https://mathhelp.com

Course Outcomes: At the end of the course, the Student will be able to

CO1	Evaluate the nth derivative Using Leibnitz Rule
CO2	Finding the maxima and minima for the functions of two variables
CO3	Calculate the Envelope, Evolute, radius of curvature and circle of curvature
CO4	Finding the angle between radius vector and tangent.
CO5	Calculate the asymptotes of the curve

Mapping of Course Outcomes to Program Outcomes and Program Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3	2	3	1	2	2	2	3	2	1
CO2	3	3	2	2	1	2	2	2	3	2
CO3	2	2	3	2	3	2	2	1	2	2
CO4	3	2	1	2	2	2	1	3	2	2
CO5	3	2	3	2	2	2	1	3	2	2

1 - Low 2 - Medium 3 - High

Title of the C	Title of the Course ANALYTICAL GEOMETRY									
Paper Num						II				
Category		Core	Year	Ι	Credits	4	Course			
Category		Core	Semester	II	Credits	*	Code			
Objectives of the	ne Cour	Se Se					3325			
NecessargeometriTo prese	 Necessary skills to analyze characteristics and properties of two-and three-dimensional geometric shapes. To present mathematical arguments about geometric relationships. To solve real world problems on geometry and its applications UNIT-I: Polar and pole, conjugate points and conjugate lines-diameters – conjugate diameters of an ellipse - semi diameters-conjugate diameters of hyperbola. Chapter 7: Sections: 7.2, 7.3, Chapter 8 Section 8.2 – 8.5. 									
Course Outline	UNIT-II: Polar coordinates: General polar equation of straight line — Polar equation of a circle given a diameter, Equation of a straight line, circle, conic — Equation of chord, tangent, normal. Equations of theasymptotes of a hyperbola. Chapter 10: Sections: 10.1 – 10.8.									
	a plane Length planes –	under give of the per- Orthogor	en condition	s - Sy from on on a	stem of Pl a point to	anes	mal form – De – Two sides o ane – Joint equ	-		
	constant skew lin three pla	ts in the ed nes- Lengt anes.	quations of a	straig pendic	ght line – th	ne sh	lane - co-plan ortest distance int to aline - in	between two		
	UNIT-V: Equation of a sphere – Definition – the sphere through four given points – Section of a sphere by a plane - equation of a circle - tangent plane - angle of intersection of two spheres - condition for the orthogonality of two spheres - radical plane.									
	_		ons: 6.1 – 6.							
Contents and treatment as in	2.	Analytica	s for Unit 1	and I	of 3D by S	Shan	Duraipandian- thi Narayan an 3 to Unit 5			

Reference	1. Calculus and Analytical Geometry, G.B. Thomas and R. L. Finny, Pearson
Books	Publication, 9 th Edition, 2010.
	2. Analytic Geometry with Calculus, Robert C. Yates, Prentice Hall, Inc., New York, 1961.
	3. Algebra and Trigonometry with Analytic Geometry, Earl W. Swokowski and Jeffery A. Cole, Twelfth Edition, Brooks/Cole, Cengage Learning, CA, USA, 2010.
	4. Analytical Geometry of Three Dimensions, William H. McCrea, Dover Publications, Inc, New York, 2006.
	5. Calculus and Analytic Geometry, John F. Randelph, Wadsworth Publishing Company, CA, USA, 1969.
	6.Analytic Geometry and Calculus with Vectors, Ralph Palmer Agnew, McGraw-Hill Book Company, Inc. New York, 1962.
a Dagaywaa	1. https://nptel.ac.in
e-Resources	2. https://www.mathhelp.com/

Course Outcomes: At the end of the course, the Student will be able to

CO1	Find pole, polar for conics, diameters, conjugate diameters for ellipse and hyperbola
CO2	Find the polar equations of straight line and circle, equations of chord, tangent and normal and to find theasymptotes of hyperbola
CO3	Explain in detail the system of Planes
CO4	Explain in detail the system of Straight lines
CO5	Explain in detail the system of Spheres

Mapping of Course Outcomes to Program Outcomes and Program Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3	2	3	1	2	2	2	3	2	1
CO2	3	3	2	2	1	2	2	2	3	2
CO3	2	2	3	2	3	2	2	1	2	2
CO4	3	2	1	2	2	2	1	3	2	2
CO5	3	2	3	2	2	2	1	3	2	2

1 - Low 2 - Medium 3 - High

Title of the Cour	INTEGRA	INTEGRAL CALCULUS AND VECTOR ANALYSIS							
Paper Number	1		IV						
Catana	C	Year	I	C . 12	4	Comman			
Category	Category Core		II	Credits	4	Course			
•		Semester				Code			

Course Objectives

- > To develop the ability to use Reduction formula
- > To know about the method to find the Volume
- To develop the skills of the students in the Indefinite Integral.
- > To learn methods and techniques of solving line and surface Integral.

CONTENTS OF MODULE

UNIT – **I:** Reduction formulae Types, $\int x^n e^{ax} dx$, $\int x^n \cos ax dx$, $\int x^n \sin ax dx$, $\int \cos^n x dx$, $\int \sin^n x dx$, $\int \sin^n x \cos^n x dx$, $\int \tan^n x dx$, $\int \cot^n x dx$, $\int \cos^n x dx$, $\int x^n (\log x)^m dx$ -Bernoulli's formula.

Chapter 1 Section 13, 13.1 to 13.10,14,15.1.

UNIT-II: Multiple Integrals- definition of the double integrals- evaluation of the double integrals- double integrals in polar coordinates – triple integrals – change of variables – Jacobians-Propeties without proof.

Chapter 5 Section 1, 2.1, 2.2, 3.1, 4

Chapter 6 Section 1.1, 1.2

UNIT- III: Beta and Gamma functions - infinite integral – definitions – recurrence formula of Gamma functions -properties of Gamma-functions - relation between Beta and Gamma functions. Evaluation of double and triple integrals using Beta gamma functions.

Chapter 7 Section 2.1,2.2, 2.3, 3,4,5

UNIT-IV: Introduction - directional derivative- Gradient- divergence- curl-Laplacian Differential Operator.

Chapter 2 Sections 2.1 - 2.13.

UNIT-V: Line, surface and volume integrals - Integral Theorems - Gauss, Greens and Stokes (Without proof) – Problems.

Chapter 3 Sections 3.1 to 3.6

Chapter 4 Sections 4.1 to 4.5.

Recommended Text Book:

- 1. "Calculus", Vol-II by S. Narayanan and T.K. Manicavachagampillay S. Viswanathanpublishers—2007 for Unit 1, Unit 2, Unit 3.
- 2. "Vector Analysis" by P.Duraipandian and Kayalal Pachaiyappa, S.ChandFor Unit 4, Unit 5.

Reference Books:

- 1. Integral Calculus and differential equations : Dipak Chatterjee (TATA McGrawHill Publishing companyLtd.).
- 2. Vector Algebra and Analysis by Narayanan and T.K.Manickvachagam PillayS Viswanathan Publishers.
- 3. Vector Analysis: Murray Spiegel (Schaum Publishing Company, New York).

Website and e-Learning Source https://nptel.ac.in https://mathhelp.com

Course Outcomes:

At the end of the course, the Student will be able to

CO1	Evaluate the Integral using Reduction formula
	Calculate Area and Volume using double and triple Integral
CO2	
	Evaluate the Indefinite Integral using the properties of Beta and
CO3	Gamma function.
	Calculate directional derivatives, Curl, divergence.
CO4	
	Solve Line and Surface Integral using Greens, stokes and Gauss
CO5	theorem

Mapping of Course Outcomes to Program Outcomes and Program Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3	2	3	2	2	2	2	3	2	1
CO2	3	3	2	2	1	2	2	2	3	2
CO3	2	2	3	2	1	2	2	2	2	2
CO4	3	2	2	2	2	2	1	3	2	2
CO5	3	2	3	2	1	2	2	2	2	2

Title of the Cour	se	DIFFERENTIAL EQUATIONS						
Paper Number		V						
C-4	C	Year	II	C 1'4-	4	Comman		
Category	Core	Semester	III	Credits	4	Course		
						Code		

Course objectives

- > To solve first order Ordinary differential equations
- > To evaluate particular integrals of special forms
- > To solve non homogeneous simultaneous linear differential equations
- > To compute complete, singular and general integrals of partial differential equations
- > To apply Charpits method

Course	Unit I: Ordinary Differential Equations: Concept of existence and uniqueness.								
Outline	Variable separable-Homogeneous Equation-Non-Homogeneous Equations of first								
	degree in x and y-Linear Equation-Bernoulli's Equation-Exact differential equations.								
	Chapter 2: Section 1 to 6.								
	Unit II: Equation of first order but not of higher degree: Equation solvable for								
	dy/dx- Equation solvable for y- Equation solvable for x- Clairauts form-								
	Linear Equations with constant coefficients-Particular integrals								
	e^{ax} , $\sin ax$, $\cos ax$, x^m , Ve^{ax} where V is $\sin ax$ or $\cos ax$ or x^m .								
	Chapter 4: Section 1, 2.1, 2.2, 3.1, Chapter 5: Section 4.								
	Unit III: Simultaneous linear differential equations- Linear Equations of the								
	Second Order -Complete solution in terms of a known integrals-								
	Reduction to the Normal form- Change of the Independent Variable -								
	Method of Variation of Parameters(constant coefficients).								
	Chapter 6: Section- 6, Chapter 8: Section- 1,2,3,4.								
	Unit IV: Partial differential equation: Formation of PDE by Eliminating								
	arbitrary								
	constants and arbitrary functions-complete integral-singular integral-General								
	integral- Lagrange's Linear Equations Pp+Qq=R.								
	Chapter 12: Section- 1, 2, 3.1, 3.2, 4.								
	Unit V: Special methods - Standard forms - Charpit's Methods - Related								
	problems								
	Chapter 12: Section-5.1, 5.2, 5.3, 5.4, 6.								

Recommended Text:

Differential Equations and its applications", by S.Narayanan, T.K.Manikavachagam Pillay — S.Viswanathan (Printers and Publishers) Pvt. Ltd(2006).

ReferenceBooks

- 1. Introductory course in Differential Equations, D.A. Murray, Orientand Longman
- 2. Elementary Treaties on Differential Equations and their applications, H.T. H. Piaggio, C.B.S Publisher & Distributors, Delhi, 1985.
- 3. Calculus and Analysis, Horst R. Beyer, Wiley, 2010.
- 4. Differential Equations and their Applications, B r a u n, M. (3rd Edn.), Springer- Verlag, New York.1983.
- 5. Linear Partial Differential Equations for Scientists and Engineers Tyn Myint-U and Lognath Debnath. (4th Edn.) Birhauser, Berlin.2007.
- 6. Elementary Differential Equations and Boundary Value Problems, Boyce, W.E. and R.C. DiPrima. (7thEdn.) John Wiley and Sons, Inc., New York. 2001.
- 7. Ordinary and Partial Differential Equations, Sundrapandian, V. Tata McGraw Hill Education Pvt. Ltd. New Delhi, 2013

Website and e-Learning Source https://nptel.ac.in https://www.mathhelp.com/

Course Outcomes: At the end of the course, students will be able to

CO1	Solve linear differential equation and Demonstrate Bernoulli's equation and exactness of first order differential equations
CO2	Exhibit Clairauts form and solve linear differential equations with constant
	coefficients
CO3	Apply variation of parameter method to solve second order differential
	equations
CO4	Demonstrate Partial differential equations and its solutions
CO5	Implement Charpit's method

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	2	2	2	2	2	2	2	2	2	2
CO2	2	3	2	2	2	1	2	1	2	2
CO3	2	2	1	1	1	2	2	2	3	2
CO4	1	2	2	2	2	2	3	3	2	3
CO5	3	2	3	3	3	2	2	2	2	2
		1	Low	2 – Medium		3 – High				

Title of the Cou	ELEMENTARY NUMBER THEORY							
Paper Number	er	VI						
Category	Core	Year Semester	III	Credits	4	Course Code		

Course objectives

- ➤ To explain the application of divisibility, congruences and its applications in number theory from an algebraic view point.
- > To demonstrate quadratic residues, describe mobius inversion formula and solving simultaneous linear equations.

CONTENTS OF MODULE								
Unit I: Introduction-Divisibility-Primes-The Binomial theorem								
Unit II: Congruences, Solution of Congruences, Chinese Remainder Theorem-								
Primitive roots and Power residue								
Unit III: Quadratic Residue, Quadratic reciprocity, The Jacobi Symbol								
Unit IV: Greatest Integer Function, Arithmetic function, The Mobius Inversion								
formula								
Unit V: The equation ax+by=c,Simultaneous Linear Equation,Pythagorean								
Triangle								

Contents and treatment as in: "An Introduction to the Theory of Numbers (Vth edition)", by Ivan Niven, Herbert S.Zuckarman and Hugh L.Montgometry John Wiley&Sons, Inc.2001.

Chapter 1	Sections 1.1 to 1.4
Chapter 2	Sections 2.1-2.3,2.8
Chapter 3	Sections 3.1 to 3.3
Chapter 4	Sections 4.1, 4.2 and 4.3
Chapter 5	Sections 5.1 to 5.3

Reference Books:

- 1. Elementary theory of numbers, cy. Hsiung, Allied publishers, 1995
- 2. Elementary Number Theory, Allyn and Bacon Inc., Boston, 1980
- 3.Intoduction to Analytic Number Theory, Tom.M.Apostol,Narosa Publishing Houses, New Delhi,1989

e-Resources:

- 1.https://nptel.ac.in
- 2.https://mathonline.wikidot.com

Course outcomes: At the end of the course, students will be able to

CO1	Illustrate divisibility, primes and the binomial theorem
CO2	Judge the solution of congruences using Chinese remainder theorem and explain primitive roots and residues.
CO3	Develop the importance of quadratic residues and reciprocity to apply in quadratic residues and reciprocity.
CO4	Compare greatest integer function and arithmetic function and develop it to mobius inversion formula.
CO5	Examine simultaneous linear equations and formulate it to pythogorean triangles.

Mapping of Course Outcomes to Program Outcomes and Program Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	2	3	3	2	2	3	3	3	2	3
CO2	3	3	3	2	1	2	3	2	2	3
CO3	3	3	2	1	2	3	3	1	3	3
CO4	3	2	3	1	2	3	3	3	2	3
CO5	2	2	3	3	2	3	3	2	3	3

Title of the Cou	rse	PROBABILITY AND STATISTICS – I					
Paper Number	er	III					
Category	Allied	Year Semester	III	Credits	5	Course Code	

Course Objectives

Students will acquire knowledge of

- > The laws of Probability and Baye's theorem.
- > Measures of Location, Dispersion, Correlation and Regression
- > The Discrete and Continuous Probability Distribution

COs	CONTENTS OF MODULE
CO1	UNIT-I: Concept of sample space – Events – Definition of Probability (classical, Statistical & Axiomatic) – Addition and Multiplication laws of Probability – Independence – Conditional Probability – Baye's theorem - Simple Problems Chapter - 4: Sections - 4.3,4.3.1,4.5,4.5.1,4.5.2,4.5.3,4.6.1,4.6.2,4.7,4.9.
CO2	UNIT-II: Random Variables (Discrete and Continuous) Distribution function- Expected values and Moments- Moment generating function – cumulants- Examples Chapter - 5: Sections - 5.1,5.2,5.3,5.4,5.4.1,5.4.3 Chapter - 6: Sections - 6.1,6.7,6.9,6.10.
CO3	UNIT-III: Characteristic function- Uniqueness and Inversion theorems (Statements and applications only)- Chebychev's Inequality – Simple Problems. Convergence in probability, Weak Law of large numbers with numerical examples. Chapter - 6: Sections - 6.11,6.12.
CO4	UNIT-IV: Concepts of bivariate distributions- Correlation and Regression-Linear Prediction- Rank Correlation coefficient, Intra class correlation coefficient, Concepts of partial and multiple correlation coefficients- Simple problems. Chapter - 10: Sections - 10.1 - 10.7.4.
CO5	UNIT-V: Standard Distributions — Bernoulli Distribution, Binomial- Poisson-Normal- Uniform distributions- Geometric- Exponential- Gamma -Beta distributions- Inter relationship between distributions. Chapter - 7: Sections - 7.1,7.2,7.3.1. Chapter - 8: Sections - 8.1-8.6.

Contents and treatment as in	Elements of Mathematical Statistics, by S.C.Gupta &V.K.Kapoor, Sultan Chand & Sons, New Delhi.							
Reference Books	 Hogg R.V. & Craig A.T. (1988): Introduction to Mathematical Statistics, McMillan. Mood A.M. &Graybill F.A. &Boes D.G. (1974): Introduction theory of Statistics, McGraw Hill. Snedecor G.W. & Cochran W.G(1967): Statistical Methods, Oxford and IBH. 							
e-Resources:	 https://nptel.ac.in https://www.wikipedia.org. http://ebooks.lpude.in.statistics. 							

Course Outcomes: At the end of the Course, the Student will be able to

CO1	Illustrate and describe sample spaces and events for random experiments. calculate probabilities of event in discrete sample spaces and conditional probabilities of events using Baye's theorem.
CO2	Calculate the expected value of a probability distribution, obtain moments and its generating function and also obtain probability generating function
CO3	Apply the concepts of characteristic function and Chebychev's Inequality and demonstrate the theorems related to convergence in probability
CO4	Study the relationship between two or more variables
CO5	Illustrate the concept of a probability distribution and sketch the same to real world problems involving various distributions like Binomial, Poisson and Normal distribution, Uniform distributions Geometric, Exponential, Gamma, Beta distributions and identify the Inter relationship between distributions.

Mapping of Course Outcomes to Program Outcome & Program Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3	3	2	1	2	2	2	3	3	2
CO2	3	2	2	1	2	2	2	2	2	3
CO3	3	3	2	1	1	1	2	3	2	2
CO4	3	2	1	2	2	2	2	2	2	2
CO5	3	2	1	1	2	2	2	2	3	3

Title of the Course	NUMERICAL METHODS - I							
Paper Number	Allied							
Category Allied	Year II Credits 5 Course							
	Semester III Code							
Objectives of the	To Solve Transcendental and Algebraic Equations							
Course	To understand the difference operators and their relations.							
	To interpolate the given data using different methods.							
	To use difference formula to compute derivatives and integrals.							
`Course Outline	UNIT-I: The Solutions of Numerical Algebraic and Transcendental							
	Equations: Introduction – Bisection method – Iteration method –							
	Regula Falsi method – Newton – Raphson method – Horner's							
	Method							
	Chapter III: Sections – 1 to 5, 8							
	UNIT-II: Simultaneous Linear Algebraic equations: Introduction –							
	Gauss Elimination method – Computation of the inverse of a							
	matrix using Gauss Elimination method – Method of							
	Triangularisation – Iterative methods							
	Chapter IV: Sections – 1 to 4, 6							
	UNIT-III: Finite Differences: Backward differences – central difference notations – Properties of the Operator △ - Difference of							
>	polynomials – Factorial polynomials – The Operator E –							
>	Relation between E and \triangle - Relation between D and \triangle -							
	Relation between the operators - Summation of Series							
>	Francis Control of Property of							
>	Chapter V: Sections: 6, 8, 10 – 12, 14 – 16, 18, 19							
>	UNIT-IV: Central Difference Interpolation Formulae: Gauss forward							
>	and backward interpolation formula - Stirling's formula - Bessel's							
	formula							
	Chapter VII: Sections: 3 – 6							
	UNIT-V: Interpolation with unequal intervals; Divided differences -							
	properties of divided differences – Newton's interpolation formula for							
	unequal intervals - Lagrange's formula for interpolation							
	Chapter 8: Sections: 1 – 4							

Recommended	Numerical Methods in Science and Engineering, Dr. M. K.									
Text	Venkatraman, The National Publishing Company, Madras – 600 001.									
	(Third Edition)									
Reference Books	 Numerical Method, P.Kandasamy, K.Thilagavathy, K.Gunavathy, S.Chand and company Ltd., New Delhi (Reprint 2002) Numerical Methods for Scientific and Engineering Computations, M.K.Jain, S.R.K.Iyankar, R.K.Jain, (Sixth Edition), New Age International (P) Ltd. Publishers, New Delhi. Numerical Methods, A.Singaravelu, Meenakshi Agencies, Chennai – 601302. 									
Website and	https://ocw.mit.edu/courses/mathematics/18-336-numerical-methods-									
e-Learning Source	for-partial-differential-equations-spring-2009/ https://www.mathworks.com									

Course Outcomes: At the end of the course, students will be able to

CO1	Solve algebraic and transcendental equations using bisection method, iteration
	method, regula falsi method, and Newton Raphson method.
CO2	Solve simultaneous linear equations using Gauss elimination method, Gauss Jordon
	method, and Gauss Seidel method.
CO3	Use finite differences to calculate differences of a polynomial, factorial polynomials,
	differences of zero, and summation series.
CO4	Perform interpolation using central differences formulae, and Gauss forward and
	backward formulae.
CO5	Perform Numerical differentiation and integeration.

Mapping of Course Outcomes to Program Outcome & Program Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3	2	2	2	2	2	2	2	2	2
CO2	2	3	2	2	3	1	2	2	2	2
CO3	2	2	2	2	2	2	2	2	3	2
CO4	2	3	2	2	2	2	3	2	2	2
CO5	3	2	2	2	2	2	2	2	2	3

Title of the Cou	rse	INTEGRAL TRANSFORMS					
Paper Numbe	VII						
Category	Core	Year Semester	IV	Credits	4	Course Code	

Course Objectives:

- > To understand Laplace Transform
- ➤ To apply Laplace transform to solve differential equations
- > To analyse Fourier series and its applicability
- > To compute Fourier Transform

Course Outline

Unit I: The Laplace Transforms-Definitions-Sufficient conditions for the existence of the Laplace transform(without proof)-Laplace transform of periodic functions-some general theorems-evaluation of integrals using Laplace transform-Problems.

Chapter 5: Section-1 to 5.

Unit II: The inverse Laplace Transforms- Applications of Laplace Transforms to ordinary differential equations with constant co-efficients and variable co-efficients, simultaneous equations and equations involving integrals-Problems.

Chapter 5: Section-6 to 12.

Unit III: Fourier series- Expansion of periodic functions of period 2π -Expansion of even and odd functions, Half range Fourier series-Change of intervals –Problems.

Chapter 6: Section-1 to 6

Unit IV: Fourier Transform- Infinite Fourier Transform(Complex form) – Properties of Fourier Transform .

Chapter 6: Section-8 to 10.

Unit V: Fourier cosine and Fourier sine

Transform – Properties – Parseval's identity – Convolution theorem -

Problems.

Chapter 6: Section-11 to 15.

Recommended Text Book:

- 1. "Calculus-Volume III" S.Narayanan and T.K.ManicavachagamPillai.
- S. Viswanathan Publishers Pvt. Ltd. 2006

Reference Books

- 1. Engineering Mathematics Volume III, P. Kandasamy and Others, (S. Chand and Co)
- 2. Advanced Engineering Mathematics Stanley Grossman and William R. Devit
- 3. Engineering Mathematics III, A. Singaravelu, Meenakshi Agency, Chennai 2008.
- 4.Engineering Mathematics for Semester III- Third Edition T. Veerarajan ,Tata McGraw-Hill Publishing Company Ltd, New Delhi

Website and e-Learning source

https://nptel.ac.in https://www.mathhelp.com/

Course Outcomes: At the end of the course, students will be able to

CO1	Analyse Laplace transform and the conditions of existence of
COI	• • • • • • • • • • • • • • • • • • •
	Laplace transform
CO ₂	Implement the Laplace transform technique to solve differential
	equations
	1
CO ₃	Study the expansion of periodic functions using Fourier Series
CO4	Demonstrate the Fourier transform and its properties
CO5	Illuminate problems using Fourier cosine and Fourier sine
	Transform.

Mapping of Course Outcomes to Program Outcome & Program Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3	2	2	2	2	2	2	2	2	2
CO2	2	3	1	1	1	1	2	1	2	2
CO3	2	2	2	2	2	2	2	2	3	2
CO4	2	3	2	2	2	2	3	2	2	2
CO5	3	2	2	2	2	2	2	2	2	2

Title of the Course		D	ISCRE	TE MATH	EN	MATICS	
Paper Nu	mber	VIII					
G .		Year	II	G 114		Солидо	
Category	Core	Semester	IV	Credits	4	Course Code	

Course Objectives: Students will acquire knowledge

- > To apply tools and ideas in Mathematics for solving Applied Problems.
- > To Evaluate Boolean functions and to express a logic sentence in terms of predicates, quantifiers, and logical connectives.

COs	CONTENTS OF MODULE
CO1	UNIT-I: Integers: Set, some basic properties of integers, Mathematical induction, divisibility of integers, representation of positive integers Chapter 1 - Sections 1.1 to 1.5
CO2	UNIT- II: Boolean algebra & Applications: Boolean algebra, two element Boolean algebra, Disjunctive normal form, Conjunctive normal form Chapter 5 - Sections 5.1 to 5.4
CO3	UNIT–III: Application, Simplification of circuits, Designing of switching circuits, Logical Gates and Combinatorial circuits. Chapter 5 - Section 5.5, 5.6
CO4	UNIT-IV: Recurrence relations and Generating functions: Sequence and recurrence relation, Solving recurrence relations by iteration method, Modeling of counting problems by recurrence relations, Linear (difference equations) recurrence relations with constant coefficients, Generating functions, Sum and product of two generating functions, Useful generating functions, Combinatorial problems. Chapter 6 - Section 6.1 to 6.6
CO5	UNIT-V: Proportional logic and Predicate logic: Proportional logic, Adequate system of connectivies, Translation of sentences in a Natural Language into Statement Formula, Logical validity of arguments, Predicate Logic, Negation of a statement obtained by qualification of a predicate, Logical operations on predicates or quantified predicates, Symbolization of sentences by using predicates, Quantifiers and connectives, Logical validity of arguments. Chapter 8 - Sections 8.1, 8.5 to 8.8 (Omit Section 8.2 to 8.4)

Contents and	"Introduction to Discrete Mathematics", 2 nd edition, 2002 by M.								
treatment as	K. Sen and B. C.Chakraborty, Books and Allied Private Ltd., Kolkata.								
in									
Reference Books	 Discrete mathematics for computer scientists and mathematicians by J. L.Mertt, Abraham Kendel and T. P. Baker prentice-hall, India. Discrete mathematics for computer scientists by John Truss-Addison Wesley. Elements of Discrete Mathematics, C. L. Liu, New York Mcgraw-Hill, 1977. 								
e-Resources:	 https://brilliant.org/wiki/discrete-mathematics/. https://www.tutorialspoint.com/discrete_mathematics/. 								

Course Outcomes: At the end of the Course, the Student will be able to

CO1	Analyse the divisibility of integer and also representation of
CO2	Apply Boolean algebra concepts in disjunctive and conjunctive normal form
CO3	Identifying, designing and analyzing circuits, logical gates and combinatorial circuits
CO4	Demonstrate recursive function and classify homogeneous and non-
	homogeneous linear recurrence relations
CO5	Demonstrate Proportional logic and Predicate logic

Mapping of Course Outcomes to Program Outcome & Program Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3	2	1	1	1	1	1	1	2	2
CO2	3	2	1	1	1	2	1	2	2	2
CO3	2	3	2	1	1	1	1	1	2	2
CO4	2	2	1	1	1	2	1	1	2	2
CO5	2	3	2	1	1	1	1	1	3	3

Title of the Cou	PROBABILITY AND STATISTICS – II						
Paper Numb		IV					
Cotogowy	Allind	Year	П	Cradita	5	Course	
Category	Allied	Semester	IV	Credits	3	Code	
						Code	

Learning outcomes: Students will acquire knowledge

- > To provide the foundation of statistical analysis used in varied application
- > Of Sampling methods, Tests of significance and testing of hypothesis.

COs	CONTENTS OF MODULE
CO1	UNIT-I: Sampling Distributions – Concept of Standard error – Sampling distribution based on normal distribution- t, z, Chi Square and F distributions. Chapter - 12: Sections -12.1 - 12.3.1. Chapter - 13: Sections - 13.1 - 13.3.3. Chapter - 14: Sections - 14.1 - 14.5.2.
CO2	UNIT- II Point estimation – Concepts of unbiasedness – consistency – efficiency and sufficiency- Cramer Rao inequality – Methods of estimation- Maximum likelihood- moments - minimum square and their properties (Statement only). Chapter - 15: Sections - 15.1 - 15.4
CO3	UNIT–III: Test of significance – Standard error- Large sample test, Exact test based on normal, t, chi-square and F distribution with respect to population mean/means, proportion/proportions, variance and correlation coefficient. Test of independence of attributes based on contingency tables- Goodness of fit based on chi-square. Chapter - 12: Sections - 12.3.2 12.9 Chapter - 13: Sections - 13.5.2,13.5.3
CO4	UNIT-IV: Analysis of Variance: One way, two way classification concepts & Problems. Interval estimation — Confidence intervals for population mean/means- Proportion/proportions and variances based on t, Chi-Square and F. Chapter - 17: Sections - 17.1 - 17.3
CO5	UNIT-V: Test of hypothesis- Type I and II errors- Power of test – Neymann Pearson lemma- Likelihood ratio test-concepts of most powerful test- statements and results only-simple problems. Chapter - 16: Sections - 16.1 - 16.5

Recommended Text:

Elements of Mathematical Statistics, by S.C.Gupta &V.K.Kapoor, Sultan Chand & Sons, New Delhi.

Reference Books	1. Hogg R.V. & Craig A.T. (1988): Introduction to Mathematical
	Statistics, McMillan.
	2. Mood A.M. & Graybill F.A. & Boes D.G. (1974): Introduction to
	theory of Statistics, McGraw Hill.
	3. Snedecor G.W. & Cochran W.G(1967): Statistical Methods,
	Oxford and IBH.
	4. Hoel P.G. (1971): Introduction to Mathematical Statistics,
	Wiley.
	5. Wilks S.S. Elementary Statistical Analysis, Oxford and IBH.

e-Resources:	 https://nptel.ac.in https://www.wikipedia.org. http://ebooks.lpude.in.statistics.
--------------	---

Course Outcomes: At the end of the Course, the Student will be able to

CO1	Identify a statistic and point out its importance in application and summarize the theoretical aspect of normal and non-normal populations.
CO2	Explain the bound for defining most efficient estimates derived from Rao Cramer inequality and compare the process of finding interval estimation with the process of finding point estimation.
CO3	Fit best approximation for a given set of data and also compare and analyze whether two sets of data are coming from same population or different population
CO4	Analyze the variability of samples under the given distributions and also obtain its confidence intervals
CO5	Point out the existence of most powerful test by summarizing the theoretical aspects of Neymann Pearson result.

Mapping of Course Outcomes to Program Outcome & Program Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3	2	2	1	1	2	2	3	3	2
CO2	3	3	2	1	1	1	3	3	2	2
CO3	2	3	3	1	1	2	1	2	2	2
CO4	3	3	2	1	1	2	2	3	3	2
CO5	3	3	2	1	1	2	1	2	2	2

Title of the	e Course	Numerical Methods- II								
Paper Nur	nber	Allied Pap	oer							
Category	Allied	Year	II	Credits	5		Course			
		Semester	IV				Code	9		
Objectives	of the	• To		students	to	nume	erical	diffe	erentiation	and
Course		inte	egration.							
		• To	teach stude	ents how to s	solve	differ	ence e	quatio	ons.	
				students wi			cept of	Num	erical solu	tion
		of	ordinary di	fferential eq	luatio	ons.				
Course Ou	ıtline	UNIT-I:	Numerical o	differentiati	on; D	erivat	ives us	sing N	lewton's	
		forward a	nd backwai	d difference	e fori	nulae	– deriv	vative	es using	
		Sterling's	formula –	derivatives	using	divid	led diff	ferenc	e formula	_
		Simple Pr				,				
		_	omple Problems.							
		Chapter: 7 Sections: 7.1 – 7.4 [Omit 7.5 and 7.6]								
		UNIT-II: Numerical Integration; General quadrature formula –								
		Trapezoidal rule - Simpson's one third rule - Simpson's three- eight								
		rule – Weddle's rule – Simple Problems.								
		Chapter: Section 7.7 – 7.11, 7.13 – 7.15 [Omit 7.12]								
		UNIT-III	: Difference	ce equation	: De	finitio	n – 01	der a	and degree	of a
		difference	equation	- Linear d	iffere	ence e	equatio	n –	Compleme	entary
		function and particular integral of $f(E)$ $y_x = \phi(x)$.								
		Chapter: 8 Sections: 8.1 – 8.6								
		UNIT-IV	: Numerica	al solution	of or	dinary	y diffe	rentia	l equation	ıs(I
		UNIT-IV: Numerical solution of ordinary differential equations(I order only) Taylor's series method – Picard's method – Eulers' method								
		- Simple Problems								
		Chapter: 9: Sections : 9.5 – 9.7								
		UNIT-V: Numerical solution of ordinary differential equations								
		(I order only) Modified Euler's method – Runge – kutta method								
		forth orde	r only - Sir	nple Proble	ms					
		Chapter 9: Sections: 9.9 – 9.11								

Recommended	Calculus of finite differences and Numerical Analysis, by P.Kandasamy								
Text	& K.Thilagavathy - S.Chand & Co Pvt Ltd.								
Reference Books	1. Calculus of finite differences and Numerical analysis by Gupta-								
	Malik, Krishna Prakastan, Mandir, Meerut.								
	2. Numerical Methods in Science and Engineering by								
	M.K. Venkataraman, National Publishing house, Chennai.								
	3. Numerical Analysis by B.D.Gupta, Konark Publishing								
	4. Calculus of finite differences and Numerical Analysis by								
	Saxena, S.Chand & Co								
Website and	https://ocw.mit.edu/courses/mathematics/18-336-numerical-methods-for-								
a Laguning Course	partial-differential-equations-spring-2009/								
e-Learning Source	https://www.mathworks.com								

Course Outcomes: At the end of the Course, the Student will be able to

CO1	Find numerical differentiation using types of interpolation formulae
CO2	Find numerical integration using Trapezoidal rule - Simpson's 1/3 rule - Simpson's 3/8 rule - Weddle's rule
CO3	Solve linear homogeneous & non-homogeneous difference equation with constant coefficients and calculate particular integrals
CO4	Find numerical solution to ODE using Taylor's series, Picard's & Eulers' Method
CO5	Find numerical solution to ODE using Modified Euler's method & 4th order RK method.

Mapping of Course Outcomes to Program Outcomes & Program Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PS02	PS03
CO1	2	2	2	2	2	2	2	3	3	2
CO2	3	2	2	2	2	3	2	3	2	3
CO3	3	3	1	1	1	2	2	3	1	2
CO4	2	3	1	1	1	2	1	2	2	2
CO5	3	2	1	2	2	2	2	3	2	2

Title of the (Course	ALGEBRAIC STRUCTURES					
Paper Nun	nber	IX					
G 4		Year	III	G 114	4	Course	
Category	Core	Semester	V	Credits	4	Code	

Course Objectives:

Students will acquire knowledge about the concepts of Sets, Groups and Rings.

COs	CONTENTS OF MODULE
	Unit I: Introduction to groups- Subgroups- cyclic groups - Lagrange's Theorem-
CO1	A counting principle-Examples
	Chapter 2: Section 2.4 and 2.5.
	Unit II: Normal subgroups and Quotient group- Homomorphism-
CO2	Automorphism- Examples.
	Chapter 2: Section 2.6 to 2.8.
CO3	Unit III: Cayley's Theorem- Permutation groups-Examples.
COS	Chapter 2: Section 2.9 and 2.10.
CO4	Unit IV: Definition and examples of ring- Some special classes of rings-
	homomorphism of rings- Ideals and quotient rings- More ideals and quotient
	rings.
	Chapter 3: Section 3.1 to 3.5.
CO5	Unit V: The field of quotients of an integral domain- Euclidean Rings- The
	particular Euclidean ring-Examples.
	Chapter 3:Section 3.6to 3.8.

Contents and treatment as in

Topics in Algebra – I. N. Herstein, Wiley Eastern Ltd Second Edition (1st January 2006)

Reference Books

- 1. A First Course in Abstract Algebra, John B. Fraleigh, 7th Ed., Pearson, 2002.
- 2. Abstract Algebra, M. Artin, 2nd Ed., Pearson, 2011.
- 3. Contemporary Abstract Algebra, Joseph A Gallian, 4th Ed., Narosa, 1999
- 4. Modern Algebra by M.L.Santiago, McGraw Hill Education India pvt Ltd
- 5. Modern Algebra by S. Arumugam and others, New Gamma publishing House, Palayamkottai.
- 6. Modern Algebra by Visvanathan Nayak, Emerald Publishers, Reprint 1992

Website and e-Learning Source

- 1. https://nptel.ac.in
- 2. http://garsia.math.yorku.ca/~sdenton/algstruct.
- 3. https://nptel.ac.in https://www.mathhelp.com/

Course Outcomes: At the end of the Course, the Student will be able to

CO1	Summarize the structure of Group, Subgroups and Demonstrate operations satisfying
COI	various properties in group structure.
CO2	Explain normal subgroups, quotient groups, homomorphism, automorphism and
CO2	demonstrate with an example.
CO3	Explain Cayley's theorem, the permutations groups with an example.
CO4	Define Rings, some special classes of rings with an example and Explain ideals and quotient Rings
CO5	Illustrate Imbedding of Integral domain over Field and demonstrate the
	Euclidean Rings.

Mapping of Course Outcomes to Program Outcomes & Program Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PS02	PS03
CO1	3	3	2	2	1	2	2	3	3	2
CO2	3	3	2	2	1	2	2	3	2	3
CO3	3	3	1	1	1	2	1	3	1	2
CO4	3	3	1	1	1	2	1	2	2	2
CO5	3	2	1	2	1	2	2	3	2	2

Title of the (Course]	REAL AN	ALYS	IS-I	
Paper Nur	nber			2	K		
Cata	C	Year	III	G . 14	4	Course	
Category	Core	Semester	V	Credits	4	Code	

- To make the students capable of analysing any given sequence and series
- > To calculate limit superior, limit inferior and the limit of a sequence
- > To learn certain proof techniques and write precise proof of theorems
- > To recognize alternating, conditionally convergent and absolutely convergent series

CONTENTS OF MODULE

Unit I:

Sets and Functions: Sets and elements- Operations on sets- functions- real valued functions- equivalence- countability - real numbers- least upper bounds.

Chapter 1 Section 1.1 to 1.7

Unit II:

Sequences of Real Numbers: Definition of a sequence and subsequence- limit of a sequence-convergent sequences- divergent sequences- bounded sequences- monotone sequences

Chapter 2 Section 2.1 to 2.6

Unit III:

Operations on convergent sequences- operations on divergent sequences- limit superior and limit inferior- Cauchy sequences.

Chapter 2 Section 2.7 to 2.10

Unit IV:

Series of Real Numbers: Convergence and divergence- series with non-negative terms-alternating series- conditional convergence and absolute convergence- tests for absolute convergence- series whose terms form a non-increasing sequence- the class l^2 .

Chapter 3 Section 3.1 to 3.4,3.6,3.7 and 3.10

Unit V:

Limits and Metric Spaces: Limit of a function on a real line-. Metric spaces - Limits in metric spaces. Continuous Functions on Metric Spaces: Function continuous at a point on the real line-Reformulation- Function continuous on a metric space.

Chapter 4 Section 4.1 to 4.3 Chapter 5 Section 5.1 to 5.3

Recommended Text: Contents and treatment as in

Richard R. Goldberg, Methods of Real Analysis, Oxford and IBH Publishing Co.

Reference Books:

- 1. Principles of Mathematical Analysis by Walter Rudin, TataMcGrawHill.
- 2. Mathematical Analysis Tom M Apostol, Narosa Publishing House

Website and e-Learning Source

https://nptel.ac.in https://www.mathhelp.com/

Course outcomes: At the end of the course, students will be able to

CO1	Describe the fundamental properties of the real numbers that lead to the
	formal development of real analysis and recognize the basic properties of
	the field of real numbers, cardinality of a sets.
CO2	Demonstrate the concepts of limits in sequences and examine the basic
	principles of convergence and conditions of the convergent, divergent of a
	sequence.
CO3	Estimate the limit superior, limit inferior, limit of a sequence and explain
	Cauchy sequence.
CO4	Construct mathematical proofs of convergence test of a sequence and
	distinguish between conditional convergence and absolute convergence.
	Explain and demonstrate the basic concepts of absolute convergence of a
	sequence and derive the 'test for convergence' using summation by parts.
CO5	Explain the Euclidian distance function and the geometric meaning of each
	of the metric space properties and point out whether a given distance
	function is a metric.

Mapping of Course Outcomes to Program Outcomes and Program Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	2	3	2	1	2	2	2	2	2	2
CO2	3	2	2	1	2	2	2	3	2	2
CO3	2	2	2	1	1	3	2	2	2	2
CO4	3	2	1	1	1	3	1	3	2	3
CO5	3	2	2	1	2	2	2	3	2	3

Title of the Cours	e	MECHANICS					
Paper Number		XI					
Category	Core	Year Semester	III V	Credits	4	Course	
Ů,		Semester	V			Code	

- Students will acquire knowledge about
- Particles or body in rest under the given forces. Forces, equilibrium of a particle and centre of mass of various bodies.
- The motion of bodies under the influence of forces. Rectilinear motion of particles, Projectiles and Moment of Inertia of Particles.

COs	CONTENTS OF MODULE
CO1	Unit 1
	Force- Newtons laws of motion - resultant of two forces on a particle-
	Equilibrium of a particle, Limiting equilibrium of a particle on an inclined
	plane.
	Chapter 2 - Section 2.1, 2.2,
	Chapter 3 - Section 3.1 -3.2
CO2	Unit 2
	Forces on a Rigid Body: Moment of a Force – General motion of a body –
	Equivalent systems of forces- Parallel Forces, Forces along the sides of a
	triangle – Couples.
	A hanging body in equilibrium, Hanging strings- equilibrium of a uniform
	homogeneous string – suspension bridge.
	Chapter 4: Sections 4.1 to 4.6
	Chapter 9 - Section 9.1, 9.2.
CO3	Unit 3
	Kinematics -Basic units – velocity – acceleration- coplanar motion . Rectilinear
	motion under varying Force: Simple harmonic motion (S.H.M.) – S.H.M.
	along a horizontal line- S.H.M. along a vertical line
	Chapter 1 - Section 1.1 to 1.4
	Chapter 12 - Section 12.1 to 12.3
CO4	Unit 4
	Projectiles -Forces on a projectile- projectile projected on an inclined plane.
	Moment of inertia, Perpendicular and parallel axes theorem
	Chapter 13 - Section 13.1, 13.2
	Chapter 17 - Section 17.1, 17.1.1
CO5	Unit 5
	UNIT-V: Central Orbits: General orbits – Central orbit – Conic as a centered
	orbit
	Chapter 16 - Section 16.1 to 16.3

Contents and treatment as in

Mechanics, by P.Duraipandian, Laxmi Duraipandian and Muthamizh Jayapragasam, S.Chand and company private limited Reprint 2016.

Reference Books

- 1. Engineering Mechanics: Statics, J.L. Meriam and L. G. Kraige, Seventh Edition, Wiley and sons Pvt ltd., New York, 2012.
- 2. Engineering Mechanics: Dynamics, J.L. Meriam, L. G. Kraige, and J.N. Bolton, 8th edition Wiley and sons Pvt ltd., New York, 2015.
- 3. Engineering Mechanics (Statics and Dynamics) A. K. Dhiman, P.Dhinam and D. Kulshreshtha, McGraw Hill Education (India) Private Limited, New Delhi, 2015.
- 4. Introduction to Statics and Dynamics, A. Ruina and R. Pratap, Oxford University Press, 2014.
- 5. The Elements of Statics and Dynamics, S.L. Loney, Cambridge University Press, 1904.
- 6. Dynamics K. ViswanathaNaik and M. S. Kasi, Emerald Publishers.
- 7. Dynamics A. V. Dharmapadam, S. Viswanathan Publishers.

e-Resources:

- 1. https://www.wikipedia.org/
- 2. https://physics.info

Course outcomes: At the end of the course, the student will be able to

CO1	Recall the basic definitions of forces, Newtons laws of motion, Equilibrium of a particle.
CO2	Distinguish problems under moments, parallel forces and couples. Explain hanging body in equilibrium and demonstrate problems under hanging strings.
СОЗ	Recall the basic definitions of velocity, acceleration, coplanar motion simple harmonic motion and demonstrate problems under Simple harmonic motion.
CO4	Recall concepts of projectiles, differentiate time of flight, horizontal range. Explain moment of Inertia of simple bodies and theorems of parallel and perpendicular axes
CO5	Define circular motion, central orbits, and evaluate various problems centered orbit.

Mapping of Course Outcomes to Program Outcomes & Program Specific Outcomes:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PS02	PS03
CO1	3	3	2	1	1	2	2	3	3	2
CO2	3	3	2	1	1	2	2	3	2	3
CO3	3	3	1	1	1	2	1	3	1	2
CO4	3	3	1	1	1	2	1	2	2	2
CO5	3	2	1	2	1	2	2	3	2	2

1 Low 2-Medium 3-High

Title of the Cours	e	OPERATIONS RESEARCH					
Paper Number		XII					
Cotogowy	Carre			Year III Credits 4			
Category	Core	Semester	V	Credits	4	Course Code	

- ➤ To formulate and solve the Linear Programming Problem from the real-world problems in business and industry.
- ➤ Develop mathematical skills to analyze and solve network models arising from a wide range of applications.

CONTENTS OF MODULE

Unit -1: Linear programming – Formulation – Graphical solution – Simplex method – Simple applications. Big-M method.

Chapter - 2,3,4

Unit -2: Linear programming - Principle of Duality – Primal – Dual relation -Dual simplex method – Simple applications. **Transportation Problem**: Finding initial solution by North West Corner Rule – Vogel's Approximation method and Matrix minimum method – Procedure for finding optimal solution –MODI method – Both minimisation and maximisation cases – Unbalanced and degenerate transportation problems.

Chapter 5:5.1-5.4, 5.7 Chapter 10:10.1-10.13

Unit -3: Assignment Problem: Formulation – Minimisation cases – procedure for getting optimum solution – Unbalanced problem – Maximisation problem – Problems with restrictions.

Game Theory: Two Person Zero-Sum game with saddle point – without saddle point – dominance rule – Solving 2 x n or m x 2 game by graphical method.

Chapter 11: 11.1 – 11.4 Chapter 17: 17.1 -17.7

Unit -4: Networks: Rules for network construction – Critical Path Method - Time calculation sin PERT – PERT algorithm (Crashing excluded) – Related problems.

Chapter 25

Unit -5: Sequencing Problem – n jobs through 2 machines – n jobs through 3 machines – n jobs through m machines. Graphical method.

Chapter 12: 12.1 – 12.6

Recommended Text:

KanthiSwaroop, P.K. Gupta, Manmohan, Operations Research – Sultan Chand & sons (2021) reprint.

Reference Books:

- 1.P.K. Gupta and D. S. Hira, Operations Research, S. Chand & Co.
- 1. H.A. Taha, Operations Research Prentice Hall of India, New Delhi
- 2. *Sundaresan, Ganapathy Subramanian, Ganesan.*, Resource Management Technique Meenakshi Agency.

Website and e-Learning Source https://nptel.ac.in https://www.mathhelp.com/

Course outcomes: At the end of the course, students will be able to

CO1	Able to formulate linear programming problems and solve using Graphical, Simplex method.
CO2	Able to analyze and solve Transportation using appropriate method.
CO3	Able to analyze and solve Assignment problems and Game theory.
CO4	Able to design and solve Networks Models using CPM, PERT.
CO5	Estimate optimum solution for sequencing problems.

Mapping of Course Outcomes to Program Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3	3	2	1	2	3	2	2	2	3
CO2	2	3	2	1	2	3	3	3	3	2
CO3	3	3	1	2	1	3	2	3	2	3
CO4	3	3	3	3	2	3	3	3	3	3
CO5	3	2	3	2	3	3	2	3	3	2

Title of the	PROGRAMMING IN PYTHON WITH PRACTICALS - I							
Paper N		ELECTIVE - I						
Catagory	ELECTIVE	Year	III	Cuadita	4	Course		
Category	ELECTIVE	Semester	V	Credits	4	Course Code		

- > To learn and understand Python programming basics and paradigm.
- To learn and understand data types, operators, control statements, and looping.
- > To learn and know the concepts of functions.

CONTENTS OF MODULE

UNIT-I: Basics of Python Programming: Features — History — Future — Python Interpreter and Interactive Mode — Writing and Executing First Python Programme — Values and Types — Numbers — Boolean — Lists — Strings — Variables and Identifiers — Data Types — Statements — Reserved Words — Tuple Statement — Dictionary.

Chapter 2: Section 2.1 – 2.16.

UNIT-II: Operators and Expressions – Expressions in Python – Operations on Strings – Type Conversion – Comments – Functions and Modules.

Chapter 2: Section 2.17 – 2.22.

UNIT-III: Control Flow Statements: Introduction to Decision Control Statements – Selection / Conditional Branching Statements – Basic Loops Structures – Nested Loops.

Chapter 3: Section 3.1 - 3.4.

UNIT-IV: Break Statement – Continue Statement – Pass Statement – Else Statement Used with Loops. Functions: Introduction – Defining a function – Function Call – Variable Scope and Lifetime.

Chapter 3: Section 3.5 - 3.8.

Chapter 4: Section 4.1 - 4.4.

UNIT-V: Fruitful Function –Lambda – Function Composition – Documentation Strings –Recursive Functions.

Chapter 4: Section 4.5 - 4.10 (Omit 4.9)

Recommended Text:

"Problem Solving and Programming with Python", by ReemaThareja (Second Edition, 2019, OXFORD University Press)

Reference Books:

- 1. "Problem Solving and Python Programming" by Mr. Ashok NamdevKamthane and Mr.Amit Ashok Kamthane (McGraw Hill Education (India) Private Limited).
- 2. "Python Programming" by Ch.Sathyanarayana, M.Radhika

e-Resources:

https://www.pythonforbeginners.com/ https://www.w3schools.com/

Course outcomes: At the end of the course, students will be able to

CO1	Understand the concept of variables, data types in python programming.
CO2	Understand the concept of Operators and Expressions
CO3	Understand Control Statements and Looping
CO4	Understand Statements and Function concepts.
CO5	Apply the concept of functions in python programming.

Mapping of Course Outcomes to Program Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3	2	1	2	2	3	2	3	1	2
CO2	1	2	2	1	1	2	1	2	3	3
CO3	3	1	2	2	2	1	2	3	2	2
CO4	2	3	1	2	2	2	2	1	2	1
CO5	3	2	2	1	1	1	1	2	1	3

Practical Paper I: PROGRAMMING IN PYTHON LAB –I Credits: 2

- 1. (a) Write a program to perform addition, multiplication, division, integer division, and modulo division on two integer numbers.
 - (b) Write a program to perform addition, subtraction, multiplication, and division ontwo floating point numbers.
- 2. (a) Write a program to calculate area and perimeter of circle.
 - (b) Write a program to calculate the distance between two points.
 - (c) Write a program to calculate area of triangle using Heron's formula.
- 3. (a) Write a program to find larger of two numbers.
 - (b) Write a program to find larger of n numbers.
- 4. (a) Write a program to find whether the given number is odd or even.
 - (b) Write a program to find whether the given number is prime or composite.
- 5. (a) Write a program to calculate factorial of a number.
 - (b) Write a program to find square root of a given number.
- 6. Write a program to print the calendar of any given year.
- 7. Write a program that compute P(n, r) and C(n, r).
- 8. Write a program to calculate LCM and GCD.
- 9. Write a program to print the Fibonacci Series.
- 10. Write a program to implement Tower of Hanoi.
- 11. Write a program to swap two numbers.
- 12. Write a program to make a simple calculator.
- 13. Write a program to find average of given n numbers.
- 14. Write a program to find whether the given number is an Amstrong number or not.
- 15. Write a program to calculate roots of a quadratic equation.

Title of the	LINEAR ALGEBRA									
Paper N	Paper Number		XIII							
Category	Core	Year Semester	VI	Credits	4	Course Code				

Students will acquire knowledge about the Vector Spaces, Dual spaces, Inner product spaces and linear transformations.

COs	CONTENTS OF MODULE
	UNIT-I: Vector spaces – Subspaces – Linear Combinations and Linear span –
CO1	System of linear equations – Elementary Matrices
	Chapter: 1 Sections:1.1–1.4
	UNIT-II: Linear Dependence and Linear independence – Bases - Dimensions –
	Homogenous Equations – Non-homogenous equations Row reduced – Echelon form.
CO2	Chapter 1: Sections:1.5,1.6.,
	Chapter 2: Section: 2.7
	Chapter 3: Section 3.4
	UNIT-III: Linear transforms, null spaces and ranges – Matrix representation of a
CO3	linear transformation – Invertibility and isomorphisms – Dual spaces.
	Chapter 2: Sections: 2.1 – 2.4 and 2.6.
	UNIT – IV: Eigen values, Eigen vectors, Diagonalizability – Invariant subspaces –
CO4	Cayley – Hamilton theorem.
	Chapter 5: Sections:5.1,5.2 and 5.4.
	UNIT-V: Inner Products Space:Inner Products and norms Gram-Schmidt
CO5	Orthogonalization Process – Orthogonal complements.
COS	
	Chapter 6: Sections:6.1,6.2.

Recommended Text:

Linear Algebra - Stephen H Friedberg, Arnold J Insel and Lawrence E Spence, 5 th edition (2018) Pearson

Reference Books:

- 1. Topics in Algebra, I.N. Herstein, Wiley Eastern Ltd. Second Edition, 2006.
- 2. University Algebra, N.S.Gopalakrishnan, New Age International Publications, Wiley Eastern Ltd.
- 3. First course in Algebra, John B.Fraleigh, Addison Wesley.
- 4. Linear Algebra and its Applications, David C. Lay, 3rd Ed., Pearson Education Asia, Indian Reprint, 2007.
- 5. Introduction to Linear Algebra, S. Lang, 2nd Ed., Springer, 2005.
- 6. Linear Algebra and its Applications, Gilbert Strang, Thomson, 2007.

Website and e-Learning Source

https://nptel.ac.in

https://www.mathhelp.com/

Course Outcomes: At the end of the Course, the Student will be able to

CO1	Acquire a detailed knowledge about vector spaces and subspaces
CO2	Explain the concepts of Linear Dependence, Linear Independence, Bases and Dimension of basis.
CO3	Explain the concept of Linear Transformations, their Matrix representation and the notion of dual spaces with an illustration.
CO4	Find the Eigen values and Eigen vectors, to apply the concepts for diagonalisation.
CO5	Explain about Inner product and norms and to apply Gram Schmidt Orthogonalization Process to problems on inner product spaces.

Mapping of Course Outcomes to Program Outcomes & Program Specific Outcomes:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PS02	PS03
CO1	3	3	2	1	1	2	2	3	3	2
CO2	3	3	2	1	1	2	2	3	2	3
CO3	3	3	1	1	1	2	1	3	1	2
CO4	3	3	1	1	1	2	1	2	2	2
CO5	3	2	1	2	1	2	2	3	2	2

Title of the	REAL ANALYSIS II								
Paper N	umber	XIV							
Catagory	Como	Year	III	Cuadita	4	Course			
Category	Core	Semester	VI	Credits	4				
		Schiester	VI			Code			

- To write clear and precise proof of theorems.
- Introduce the concepts of Riemann integrable and properties of Riemann integrable.
- > To identify the correct theorems to deal with unknown problems.

CONTENTS OF MODULE

Unit I: Continuous Functions on Metric Spaces: Open sets- closed sets- Discontinuous function on \mathbb{R}^1 . Connectedness, Completeness and Compactness: More about open sets- Connected sets.

Chapter 5 Section 5.4 to 5.6

Chapter 6 Section 6.1 to 6.2

Unit II: Bounded sets and totally bounded sets -Complete metric spaces- compact metric spaces, continuous functions on a compact metric space, continuity of inverse functions, uniform continuity.

Chapter 6 Section 6.3 to 6.8

Unit III: Calculus: Sets of measure zero, definition of the Riemann integral, - properties of Riemann integral.

Chapter 7 Section 7.1 to 7.4(omit 7.3)

Unit IV: Derivatives- Rolle's theorem, Law of mean, Fundamental theorems of calculus.

Chapter 7 Section 7.5 to 7.8

Unit V: Taylor's theorem- Pointwise convergence of sequences of functions, uniform convergence of sequences of functions.

Chapter 8 Section 8.5

Chapter 9 Section 9.1 and 9.2

Recommended Text Book:

Richard R. Goldberg. Methods of Real Analysis. Oxford and IBH Publishing Co)

Reference Books:

- 1. Principles of Mathematical Analysis by Walter Rudin, TataMcGrawHill.
- 2. Mathematical Analysis Tom M Apostal, Narosa Publishing House.

Course outcomes: At the end of the course, students will be able to

CO1	Examine the continuity of a functions via open and closed sets and give the definition of concepts related to metric spaces, such as continuity, compactness, completeness and connectedness
CO2	Describe about bounded, unbounded sets and distinguish between compact and complete metric spaces.
CO3	Determine the Riemann integrability of a bounded function, identify the size of a sets by outer measure and choose the Riemann integral properties to find the value of the integrals.
CO4	Demonstrate the usage of the Mean Value Theorem, Fundamental theorem of Calculus to problems in the context of real analysis and Roll's theorem, Mean value theorem for differentiable functions.
CO5	Distinguish between point wise and uniform convergence of a sequence of functions and illustrate the effect of uniform convergence on the limit function with respect to continuity, differentiability, and integrability.

Mapping of Course Outcomes to Program Outcomes and Program Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3	2	2	1	2	3	1	3	2	2
CO2	3	2	2	1	1	2	1	3	2	3
CO3	2	3	3	1	2	2	2	3	2	2
CO4	3	2	2	1	1	2	2	3	2	3
CO5	3	2	2	1	2	2	2	3	2	2

Title of the C	ourse	Complex Analysis									
Paper Num	ber		XV								
Category	Core	Year	III	Credits	4	Course					
			VI			Code					

Course Objective:

- Explain the fundamental concepts of the functions of a complex variable and their role in modern mathematics and applied contexts.
- > Demonstrate understanding of analytic functions and complex integration.
- Calculate series expansions for complex-valued functions, evaluate contour integrals and definite integrals.

Unit I

Analytic functions: Limits –Limits involving the point at infinity–Theorem on limits –Continuity – Derivatives – Differentiation formulas – Cauchy Riemann equation – Sufficient conditions for differentiability – Polar coordinates– Analytic functions– Examples - Harmonic functions.

Chapter 2- Sections- 15- 26

Course Outline

Unit II

Complex Integration: Contour integrals – Examples - Upper bounds for moduli of contour integrals – Simply and Multiply connected domains—Cauchy integral formula – An extension of the Cauchy integral formula – some consequences of the extension – Liouville's theorem and Fundamental theorem of Algebra– Maximum modulus principle.

Chapter 4- Sections- 40-43,48-54 (omit 44-47)

Unit III

Series: Convergence of sequences – Convergence of series – Taylor series – Examples- Laurent series – Examples- Absolute and uniform convergence of power Series.

Chapter 5- Sections: 55-63.

Unit IV

Residues and Poles: Isolated singular point – Residues – Cauchy Residue theorem – residue at infinity –The three types of isolated singular points. **Application of residues** – Evaluation of Improper Integrals – Improper integrals from Fourier Analysis –Jordan's Lemma (statement only) – Definite integrals involving Sines and cosines–Simple examples.

Chapter 6- Sections: 68-72 Chapter 7 – Section 78-81,85 (omit 82-84)

Unit V

Mappings: Mappings – Mapping by exponential function – **Mapping by elementary function** - Linear transformation – The transformation w= 1/z – Mappings by 1/z – Linear fractional transformations (bilinear) - An Implicit form.

Chapter 2- Sections: 13, 14 Chapter 8- Sections: 90-94

	James Ward Brown and Ruel V. Churchill, Complex variables and application, 8/e, Mc-Graw Hill Book Company. (2019)
Reference Books	 Dennis G. Zill, Patrick D. Shanahan, Complex Analysis, 3/e Jones & Bartlett Learning. Murray R. Spiegel, Seymour Lipschutz, John J. Schiller, Dennis Spellman ,Schaum's outlines Complex Variables 2/e. S.Arumugam, A.Thangapandi Isaac, & A.Somasundaram, Complex Analysis, New Scitech Publications (India) Pvt Ltd (Latest Edition) B.S. Tyagi, Functions of A Complex Variable Kedarnath & Ramnath, Meerut (Latest Edition) A.R. Vasishtha, Complex Analysis Krishna Prakashan Media Pvt. Ltd (Latest Edition) J.N. Sharma, Functions of a Complex variable, Krishna Prakasan Media Pvt Ltd, (Latest Edition)
e-Resources:	 http://ebooks.lpude.in.complexanalysis. https://nptel.ac.in.

Course Outcomes: At the end of the Course, the Student will be able to

CO1	Solve problems on analytic and harmonic functions.
CO2	Outline proof of the theorems on complex integration.
CO3	Express functions as Taylor's and Laurent's series.
CO4	Apply the concepts of residues to evaluate some real improper integrals.
CO5	Construct mappings of exponential function and 1/z

Mapping of Course Outcomes to Program Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3	2	1	1	1	3	2	3	1	2
CO2	1	2	2	2	2	2	1	2	3	3
CO3	3	1	2	2	2	1	2	3	2	2
CO4	2	3	1	1	1	2	2	1	2	1
CO5	3	2	2	2	2	1	1	2	1	3

1 Low 2-Medium 3-High

Title of the	PROGRAMMING in PYTHON with PRACTICALS -II						
Paper N	Elective- II						
Catagomy	Elective	Year	III	Cuadita	2	Course	
Category Elective		Semester	VI	Credits	3	Code	

- To learn and understand Python programming basics and paradigm.
- To learn and understand control statements, Looping, functions and string manipulations.
- > To learn and know the concepts of file handling and exception handling.

CONTENTS OF MODULE

UNIT-I: Strings: Concatenating, Appending, and Multiplying Strings – Strings are Immutable – Strings Formatting Operator – Built-in String Methods and Functions – Slice Operation.

Chapter 5: Section 5.1 - 5.5

UNIT-II: Strings: Comparing Strings – Iterating String-**List,Tuple and Dictionaries:** Sequence – Lists.

Chapter 5: Section 5.8, 5.9 Chapter 6: Section 6.1, 6.2

UNIT-III: List, Tuple and Dictionaries: Tuples and Dictionaries

Chapter 6: Section 6.4, 6.5

UNIT-IV: File handling: Introduction – File path – Types of files - Opening and Closing Files – Reading and Writing Files

Chapter 7: Section 7.1 to 7.5

UNIT-V: File handling: File Position - % (string formatting Operator) – Renaming and Deleting Files – Directory Methods –

Error and Exception Handling: Introduction to Error and Exception - Handling Exceptions.

Chapter 7: Section 7.6, 7.7, 7.9, 7.10

Chapter 8: Section 8.1, 8.2

Recommended Text:

"Problem Solving and Programming with Python", by ReemaThareja (Second Edition, 2019,OXFORD University Press)

Reference Books:

- 1. "Problem Solving and Python Programming" by Mr. Ashok NamdevKamthane and Mr.Amit Ashok Kamthane (McGraw Hill Education (India) Private Limited).
- 2. "Python Programming" by Ch.Sathyanarayana, M.Radhika

e-Resources:

https://www.pythonforbeginners.com/ https://www.w3schools.com/

Course outcomes: At the end of the course, students will be able to

CO1	Understand the concept of operators, data types in python programming.
CO2	Understand control statements and Looping
CO ₃	Apply the concept of functions in python programming.
CO4	Understand the concept of formatting operator and strings
CO5	Analyze the structures of list, tuples and maintaining dictionaries

Mapping of Course Outcomes to Program Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3	2	1	1	1	3	2	3	1	2
CO2	1	2	2	2	2	2	1	2	3	3
CO3	3	1	2	2	2	1	2	3	2	2
CO4	2	3	1	1	1	2	2	1	2	1
CO5	3	2	2	2	2	1	1	2	1	3

 $1\quad Low \qquad 2-Medium \qquad 3-High$

Practical Paper - II: PROGRAMMING in PYTHON Lab -II Credits: 2

Write a Python Program for the following

- 1. To demonstrate string references using the id() function.
- 2. To display powers of a number using formatting characters.
- 3. To understand how characters in a sting are accessed using negative indexes.
- 4. To take user's name and PAN card number as input. Validate the information using is X function and print the details.
- 5. Count the occurrences of a character in a string.
- 6. Program to reverse the string.
- 7. Calculate the distance between two points.
- 8. To add two matrices.
- 9. Print a histogram of frequencies of characters occurring in a message.
- 10. Copies one python script into another in such a way that all comment lines are skipped and not copied in the destination file.
- 11. Accepts filename as an input from the user. Open the file and count the number of times a character appears in the file.
- 12. Reads data from a file and calculate the percentage of vowels and consonants in the file
- 13. Counts the number of tabs, spaces and newline characters in a file.
- 14. Write a program for BINARY SEARCH
- 15. Calculate GCD of two numbers.

Title of the	GRAPH THEORY AND ITS APPLICATIONS						
Paper N	Elective- III						
Catagowy	Elective	Year	III	Cradita	2	Course	
Category	Elective	Semester	VI	Credits	3	Course Code	
						Couc	

- Understand the fundamental concepts of graph theory.
- Learn about the connectivity and separability of graphs.
- Develop an understanding of vector spaces of a graph
- Gain knowledge about matrix representation of a graph

CONTENTS OF MODULE

UNIT I Basics: Graphs – Pictorial representation – Subgroups – Isomorphism and degrees – Walks and connected graphs – Cycles in Graphs – Cut-vertices and cut-edges.

Chapter 1: Sections: 1.1 - 1.7

UNIT-II Eulerian and Hamiltonian Graphs: Eulerian graphs – Fleury's algorithm – Hamiltonian graphs – weighted graphs.

Chapter 2: Sections 2.1 - 2.4

UNIT-III: Bipartite Graphs and Matrices: Bipartite graphs – Marriage problem – Trees – Connector problem – Matrix representations – Vector spaces associated with graphs – Cycle space – Cut-set space. Chapter 3: Section 3.1 – 3.4 Chapter 4: Section 4.1

UNIT-IV: Planar Graphs: Planar Graphs – Euler formula – Platonic solids – Dual of a plane graph. Chapter 5: Section 5.1 – 5.4

UNIT-V: : Colourings: Vertex colouring – Edge colouring – An algorithm for vertex colouring. Chapter 6: Section 6.1-6.3

Recommended Text:

A First Course In Graph Theory, Choudum.S.A. – Macmillan India Limited, 1987

Reference Book:

- 1. Introduction to Graph Theory, Murugan.M Muthali Publishing House, Chennai, 2005.
- 2. Invitation to Graph Theory, Arumugam.S and S. Ramachandran, Scitech publications India Pvt. Limited, Chennai [2001, Edition].
- 3. Introduction to Graph Theory: D.B. West (2001) Prentice Hall.

Website and e-Learning Source

https://nptel.ac.in/courses/111106050

Course outcomes: At the end of the course, students will be able to

CO1	Illustrates basic graphs and it's properties
CO2	Describe Euler and Hamiltonian graphs.
CO3	Illuminate bipartite graphs and matrices
CO4	Define Planar graphs, Euler formula and dual plane graph
CO5	Demonstrate colourings of a graph.

Mapping of Course Outcomes to Program Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	2	2	1	1	2	2	2	1	2	2
CO2	2	2	1	2	2	1	1	1	2	2
CO3	3	2	1	1	2	1	2	2	3	2
CO4	2	2	1	1	3	2	2	2	2	3
CO5	3	2	2	1	2	2	2	2	2	2

Title of the	MATHEMATICAL STATISTICS With R						
Paper N	Elective						
Catagory	Elective	Year III		Cuadita	2	Course	
Category	Category Elective		VI	Credits	3	Course Code	

- Students gain knowledge about Random Variables, Generating Functions, Correlation and Regression.
- They also learn the basic concepts of Standard Distributions, estimation theory and finding the method of estimators.
- Also, they learn some concepts in testing of hypothesis.

CONTENTS OF MODULE

UNIT – I: Random variables (discrete and continuous), Distribution function - expected values and Moments – Moment generating function Characteristic function – Uniqueness Theorem (Statement Only) Chebychev's inequality – Simple problems

UNIT-II: Concepts of bivariate distributions – Correlation & Regression – Rank Correlation Coefficient – Simple Problems.

UNIT-III: Standard Distributions Normal - Uniform distributions – Sampling Theory – Sampling Distributions – Concept of Standard error – Sampling Distribution based on Normal, t, Chi-Square and F distributions.

UNIT-IV: Test of Significance – Tests of Hypothesis –Large Sample Test – Exact test based on Normal, t, Chi-Square and F distributions with respect to Population Mean and Variance

UNIT-V: Type I and Type II Errors – Test of Independence of Attributes based on contingency tables – Goodness of fit based on Chi-Square – Simple Problems.

• Lab sessions for each unit using R software will be taken.

Recommended Text:

Elements of Mathematical Statistics by S.C.Gupta & V.K Kapoor – S.Chand & Co **Reference Book:**

- 1. Fundamentals of Mathematical by Statistics, S.C.Gupta & V.K Kapoor –S. Chand & Co
- 2. Introduction to Mathematical Statistics, Hogg, R.V Craig A.T(1988); McMillan
- 3. Introduction to theory of Statistics, Mood A.M & Graybill F.A & Boes D.G(1974) McGraw Hill.
- 4. Statistical Methods, Snedecor G.W & Cochran W.G(1967); Oxford and IBH.
- 5. Mathematical Statistics by P. R. Vittal, Margham Publications

Title of the	MATHEMATICAL MODELING						
Paper N	Elective						
Catagowy	Elective	Year	III	Cuadita	2	Course	
Category	Elective	Semester	VI	Credits	3	Code	

Learning outcomes:

Students will acquire knowledge about

- Construction and Analysis of Mathematical models inspired by real life problems.
- The Meaning of Equations and Functional Relationships.

UNIT I

Mathematical Modeling: Simple situations requiring mathematical modeling, characteristics of mathematical model. Chapter 1 Sections 1.1-1.5

UNIT II

Mathematical Modeling through differential equations: Linear Growth and Decay Models. Non-Linear growth and decay models, Compartment models.

Chapter 2 Sections 2.1- 2.4

UNIT III

Mathematical Modeling, through system of Ordinary differential equations of first order: Preypredator models, Competition models, Model with removal and model with immigrations. Epidemics: simple epidemic model, Susceptible-infected-susceptible(SIS) model, SIS model with constant number of carriers.

Medicine: Model for Diabetes Mellitus. Chapter 3 Sections 3.11, 3.12,3.2.and 3.51

UNIT IV

Introduction to difference equations. Chapter 5 Sections 5.1 and 5.2

UNIT V

Mathematical Modeling, through difference equations:Harrod Model, cobweb model application to Actuarial Science

Sections 5.3 (5.3.3 not included)

Content and treatment as in

J N Kapur, Mathematical Modeling, New Age International publishers.(2009).

Reference:-

1. Mathematical Modeling by Bimalk . Mishra and Dipak K.Satpathi.

e-Resources:

1. https://nptel.ac.in

Title of the	SPECIAL FUNCTIONS						
Paper N	Elective						
Catagory	Elective	Year	III	Cuadita	2	Соция	
Category	Elective	Semester	VI	Credits	3	Course Code	
						Couc	·

Learning outcomes:

Students will acquire knowledge about

- The mathematical concepts of Special Functions.
- Developing series solution of Differential Equations.
- The concepts of Legendre polynomial, Bessel functions and Gamma functions.

UNIT I

Introduction and Review of power series – Series solution of first order differential equations Chapter 5 Sections 26 and 27

UNIT II

Second order linear differential equations-Regular, singular points. Chapter 5 Sections 28 and 29

UNIT III

Regular singular points continued: Gauss's hyper geometric equations. Chapter 5 Sections 30 and 31

UNIT IV

Legendre polynomials-Properties of Legendre polynomials Chapter 8 Sections.44 and 45

UNIT V

Bessel functions and Gamma functions-Properties of Bessel Functions. Chapter 8 Sections 46 and 47

Contents and treatment as in

"Differential equations with Applications and Historical Notes "by George .Simmons, Second Edition, Tata Mcgraw Hill Publications.

Reference:

- 1. Differential Equations by D.Raisinghania.
- 2. Differential Equations by Ganesh C.Gorian.

e-Resources:

- 1. https://dlmf.nist.gov/.
- 2. https://Specialfunctionswiki.org.

Title of the	MACHINE LEARNING USING R						
Paper N	Elective						
Catagory	Elective	Year	III	Cuadita	2	Соция	
Category	Elective	Semester	VI	Credits	3	Course Code	
						Couc	,

- > To understand the need for machine learning for various problem solving
- To understand the latest trends in machine learning

 To design appropriate machine learning algorithms for problem solving

Course outcomes: At the end of the course, students will be able to

CO1	Differentiate various learning approaches, and to interpret the concepts of
	supervised learning, unsupervised learning
CO2	Understand Bayesian Decision theory and Multivariate Method
CO3	Apply Clustering & Regression techniques
CO4	Understand Neural Networks and Multilayer Perceptrons
CO5	Understand local models, Assessing and Comparing Classification Algorithms

CONTENTS OF MODULE

UNIT 1: INTRODUCTION TO MACHINE LEARNING Machine learning – examples of machine learning applications – Learning associations – Classification – Regression Unsupervised learning – Supervised learning – Learning class from examples- PAC learning – Noise, model selection and generalization – Dimension of supervised machine learning algorithm.

UNIT-II: DECISION THEORY Bayesian Decision theory – Introduction – Classification – Discriminant function – Bayesian networks -Association rule - Parametric Methods – Introduction – Estimation -Classification - Regression – Multivariate Methods – Data Parameter estimation - Classification – Complexity – Features – Dimensionality Reduction – Analysis – Multidimensional scaling – Linear discriminant analysis.

UNIT-III: CLUSTERING & REGRESSION Clustering — Mixture densities — k- means clustering — Supervised Learning after clustering — Hierarchical clustering — Nonparametric Methods — Density estimation — Generalization of multivariate data — Classification — Regression — Smoothing models — Decision Trees — Univariate trees — Multivariate trees — Learning rules from data — Linear Discrimination.

UNIT-IV: MULTILAYER PERCEPTRONS Structure of brain – Neural networks as a parallel processing - Perceptron – Multilayer perceptron – Back propagation- Training procedures – Tuning the network size – Learning time.

UNIT-V: LOCAL MODELS Competitive learning -Adaptive resonance theory – Self organizing map – Basis functions – Learning vector quantization – Assessing and Comparing Classification Algorithms – Combining Multiple Learners – Reinforcement Learning.

Recommended Text:

- 1. Ethem alpaydin, "Introduction to Machine Learning", MIT Press, 2004.
- 2. Tom Mitchell, "Machine Learning", McGraw Hill, 1997.

e-Resources:

https://nptel.ac.in/

http://mitpress.mit.edu/catalog/item/default.asp?ttvpe=2&tid=10341&mode=toc.

$\begin{array}{ccc} \textbf{Mapping of Course Outcomes to Program Specific Outcomes} \\ \textbf{3-High} & \textbf{2-Medium} \end{array}$

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	1	2	1	-	-	3	2	1	1	2
CO2	1	2	2	-	-	2	1	2	3	3
CO3	3	1	2	-	-	1	2	3	1	2
CO4	2	1	1	-	-	2	3	1	2	1
CO5	2	3	2	-	-	1	1	2	1	1

Title of the	TROPICAL LINEAR ALGEBRA								
Paper N		Elective							
Catagory	Elective	Year III			2	Course			
Category	Elective	Semester	VI	Credits	3	Code			

Tropical linear algebra enables students to efficiently describe and deal with complex sets reveal combinatorial aspects of problems and view a class of problems in a new, unconventional way.

Course Outcomes: At the end of the Course, the Student will be able to

CO1	Analyze the properties of curve counting compactifications.
CO2	Abel to find formulations of the local rigidity theorems for curves and hypersurfaces that are amenable to direct application to problems in control theory
CO3	Investigate eigenvalues and eigenvectors in tropical linear algebra. Able to explain the varieties that are parameterized by monomials in linear forms.
CO4	Understand the concepts of generators, basis, column spaces. Differentiate between solvable systems and unsolvable systems.
CO5	Apply the concepts of principle eigen value and eigen spaces.

CONTENTS OF MODULE

Unit − **I**: Tropical islands

Planes, amoebas and their tentacles, Implicitization, curve counting compactifications

Unit – II:

Tropical varieties:

Hypersurfaces- the fundamental theorem, the structure theorem.

Unit - III: Tropical varieties:

Multiplicities and balancing, connectivity and fans, stable intersection.

Unit -IV: Max – linear systems:

Bounded mixed integer solution to dual inequalities, the combinatorial method, the algebraic method, subspaces, generators, external and bases, column spaces, unsolvable systems.

Unit- V: Eigen Values and Eigen Vectors:

The eigen problem: basic properties, maximum cycle mean is the principle eigen value, principle eigen space, finite eigen vectors, commuting matrices have a common eigen vector.

Contents and treatment as in

- 1. Introduction to Tropical Geometry by Diane Maclagan, Bernd Sturmfels.
- 2. Peter Butkovic Max linear Systems: Theory and Algorithms, Springer Monographs in Mathematics

Reference Books

Tropical Algebraic Geometry by Itenberg, Ilia, Mikhalkin, Grigory, Shustin, Eugenii Springer.

Mapping of Course Outcomes to Program Outcomes & Program Specific Outcomes:

	P01	P02	P03	P04	P05	P06	P07	PSO1	PS02	PS03
CO1	3	2	2	2	2	2	2	3	3	3
CO2	3	3	2	2	2	2	3	3	2	2
CO3	2	3	1	2	2	2	1	3	1	2
CO4	3	3	2	2	2	2	2	2	1	2
CO5	3	2	1	2	2	2	2	3	2	2

EXTRA DISCIPLINARY COURSES

Title of the Co		PREDICTIVE MODELING WITH R (PRACTICALS)						
Paper Num	ber]	[
Category	EDP	Year	II	Credits	1	Course		
Category	БЪТ	Semester	III	Credits		Code		
		Unit – 1 Prediction versus interpretation, key ingredients of predictive Models, Terminology. Unit – 2						
		Data transformat multiple predicto Adding predictor	rs, Deali					
Course Outlin	Course Outline		Unit – 3 Over Fitting Model Tuning- The problem of over fitting- Model tuning – Data splitting- Resampling Techniques.					
		Unit – 4 Quantitative Measures of performance, The variance – Bias Trade off computing. Linear Regression – Partial Least squares. Unit – 5 Basic Regression Trees, Regression Model trees – Rule base models,						
Contents and treatment as in	1	Johnson, 2. An introd	Predictive Springer uction to	e Modeling Statistical	Learn	ax Kuhn-Kjell ing with Appli	ications in	
Reference Book	R, Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani, Springer. Reference Books 1. The Elements of Statistical Learning: Data Mining, Inference and Prediction, Trevor Hastie, Robert Tibshirani, Jerome					g, Inference, , Jerome		
e-Resources:		Friedman http://mathworld.		<u> </u>	Springe	r Series in Sta	tistics).	

Title of the Co			NU	J MERIC A	AL ME	ETHODS	
Paper Num	ber				II		
Category	EDP	Year Semester	II IV	Credits	1	Course Code	
		Unit 1 Interpolation Introduction- f difference-New for equal inter difference form Chapter 5, Sec Section 8.1 to	Forward wton's forwals- Divals- Lation 5.1,	and backy orward and vided diffe grangian F Chapter 6	ward l backv rences Polynor	vard difference - Newton's div mials for uneq	e formulas vided ual intervals
Course Outlin	e	Unit 2 Numerical Dif and backward Chapter 9, Sec	interpola	ation form		_	
		Unit 3 Numerical into Simpson's 1/3 Chapter 9, Sec	and 3/8	rules.	idal, R	omberg's met	hod-
		Unit 4 Taylor series order equation method for so Chapter 11, Se	- Modifi lving fir	ed Euler n st order ec	nethod quatior	-Fourth order las.	nod for first Runge – Kutta
		Unit 5 Numerical solution of ordinary differential equation by finite difference method- Numerical solution of partial differential equations - Elliptic equation, Poisson equation. Appendix E Chapter 12, Section12.1, 12.4 and 12.5 to 12.7					
Contents and t	treatment	"Numerical M Dr. K. Gunava		•		•	ilagavathy and
Reference Book	SS	 Numerical Methods With Programming in C by T. Veerarajan and T. Ramachandran. Introductory Methods of Numerical Analysis by S.S.Sastry. 					
e-Resources:			nptel.ac.	<u>in</u> . ine.wikido	ot.com		

Title of the	MATHEMATICS FOR COMPETITIVE EXAMINATIONS & GENERAL STUDIES						
Paper N	lumber				\mathbf{E}	D	
Category	Extra Discipli	Year Semester					
	ary						

Objectives of the	Develop problem-solving skills for competitive examinations						
Course	 Understand the concepts of averages, simple interest, compound interest, time and work, profit and loss, and problems on numbers Apply mathematical concepts to solve problems related to competitive examinations 						
Course Outline	UNIT-I: Simplifications - Averages – concepts – problems						
	UNIT-II: Simple Interest - Compound interest - concepts - problems						
	UNIT-III: Time and work - short cuts – concepts – problems						
	UNIT – IV: Profit and Loss - short cuts – concepts - problems						
	UNIT-V: Problems on numbers - short cuts — concepts - problems						

Extended	Total Hours: 30
Professional Component (is a part of internal component only, Not to be included in the External Examination question paper)	Questions related to the above topics, from various competitive examinations UPSC / TNPSC / others to be solved (To be discussed during the Tutorial hour)
Skills acquired	Knowledge, Problem Solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferrable Skill
II om tins course	Competency, 1 tolessional Communication and Transfertable 5km
Recommended	"O '' ' A '' 1 "1 D C A 1 C C 1 10 C 1 11
Text	"Quantitative Aptitude" by R.S.Aggarwal, S.Chand& Company Ltd.,
	Ram Nagar, New Delhi (2007)
Reference Books	U. Mohan Rao, Quantitative Aptitude for Competitive Examinations,
	Scitech Publications, 2016.
	Dr.M.Manoharan, Dr.C.Elango and Prof K.L.Eswaran, Business
	Mathematics, Palani paramount Publications, Reprint 2013
Website and	https://tamilnaducareerservices.tn.gov.in/
e-Learning Source	

VALUE ADDED COURSE

LATEX

Unit-1:The Basics- Document class – Page style – Page numbering – Formatting lengths –Parts of a document – Dividing the document –Bibliography.

Unit-2: The BIBTEX program – BIBTEX style files –Creating a bibliographic database -Table of contents, Index and Glossary.

Unit-3: Keeping tabs - Tables .Floats-Cross References In Latex. Typesetting Mathematics- The basics - Custom commands - More on mathematics.

Unit-4:New operators –Symbols -Theorems in LATEX–Designer theorems, Several kinds of boxes. Footnotes, Marginpars, and Endnotes.

Unit-5: Creating a simple document, structuring your document, graphic package Downloading and installingpackages, common errors.

Reference Books

LATEX: A document preparation system (2nd edition) by Leslie.

2.A beginner.s introduction to typesetting with LATEX Peter Flynn.

1. LATEX for Complete Novices Version 1.4 Nicola L. C. Talbot

e-Resources:

https://www.tug.org/twg/mactex/tutorials/ltxprimer-1.0.pdf

https://www.dickimaw-books.com/latex/novices/novices-report.pdf

Title of the C	ourse	DATA ANALYTICS						
Paper Num	ber				I			
Catagory	VAC	Year		C 1!4-	2	Commo		
Category	VAC	Semeste r		Credits	3	Course Code		
Course Outline		Unit – 1 Descriptive Statistics Introduction to the course Descriptive Statistics Probability Distributions, Inferential Statistics Inferential Statistics throughhypothesis tests Permutation & Randomization Test. Unit -2 Unit -2						
		MachineLearning	Regression & ANOVA Regression ANOVA(Analysis of Variance, MachineLearning: Introduction and Concepts Differentiating algorithmic and model based frameworks.					
		Unit – 3 Regression : Ordinary Least Squares, Ridge Regression, Lasso Regression, K Nearest Neighbours Regression & Classification.						
		Unit – 4 Supervised Learn 1 Bias-Variance Regression Linea DiscriminantAna Vector Machines	Dichotor r Discri lysis Re	my Model minantAna	Valida alysis (ation Approact	hes Logistic	
		Unit –5 Prescriptive analytics Creating data for analytics through designed experiments Creating data for analytics through Active learning Creatingdata for analytics through Reinforcement learning.						
Reference Boo	ks	2. No. 1. 2. Montgome	New Yo	rk: springe glas C., an	er, 2009 d Geor	of statistical l 9. ge C. Runger eers. John Wil	. Applied	

Title of the C	ourse	NEUR	RAL NE	TWORK	S AN	D ALGORIT	'HM	
Paper Num	ber]	I			
Category	VAC	Year		Credit	3	Course		
Category	VAC	Semeste r		S	3	Code		
		UNIT – I Introduction to A Fuzzy logic, Gen What is Neural N and various activ	etic Alg Jetwork,	orithm. F Model of	undam	entals of Neu	ral Networks:	
Course Outlin	ne	UNIT – II Neural Network Multilayer Feed-		-	-			
		UNIT – III Back propagation Networks: Back Propagation networks, Architecture of Back-propagation(BP) Networks, Back-propagation Learning, Variation of Standard Back propagation algorithms.						
		UNIT – IV Adaptive Resona Classical ART N ART2 Architectu ordering of data	etwork,	Simplifie	d ART	Γ Architecture	,ART1 and	
		UNIT – V Introduction about Fuzzy set theory: Fuzzy versus Crisp, Crisp and fuzzy sets, Crisp and Fuzzy relations. Integration of Neural Network, Fuzzy logic and Genetic Algorithm: Hybrid system. Neural Networks, Fuzzy logic, and Genetic Algorithm Hybrids.						
Reference Boo	ks	Bishop, C. M. No University Press. 2. Neural Networ S.Rajasekaran an Vijayalakshmi 3. Neuro-Fuzzy S 4. Build_Neural_	1995. rks, Fuz ad G.A. Pai. Systems	zy Logic a	and Ge	enetic Algorith	nms, by	

Other Department Allied Papers

ALLIED PAPERS

B.COM

Title of the Co	ourse	BUSINESS MATHEMATICS - I							
Paper Num	ber]	[
Category	Allie d	Year Semester	I I	Credits	5	Course Code			
		Unit - 1				Code			
Course Outlin	e	Set Theory – Defi Sets, Relations an Chapter -1 Unit – 2 Ratio, Proportion Chapter – 2,3 Unit – 3	d Functi	ons of Set		pes of Sets, Op	perations on		
	Permutation and Combination, Binominal Theorem, Exponential and Logarithmic Series Chapter – 8, 9, 10 Unit – 4								
		Minima of Univa in Business	Chapter -13 (Pg. no: 434 – 526)						
		Interest and Annuity – Banker's Discount							
		Chapter – 11, 19.							
Recommended	l Text	Business Mathematics – P.R. Vittal, Margham Publication, Reprint 2014.							
Reference Book	S	1.Business Mathematics – D.C. Sancheti and V.K. Kapoor 2.Business Mathematics – B.M. Agarwal 3.Business Mathematics – R.S. Soni							
e-Resources:		1. http://matl 2. http://www				eulus			

Title of the Co	ourse	BUSINESS MATHEMATICS – II								
Paper Num	ber			I	I					
Category	Allie	Year	I	Credits	5	Course				
Category	d	Semester	II	Credits	3	Code				
	u .	TT				Couc				
		Unit - 1		a						
		Plane Analytical		•		•	_			
		Line Segment – S		,	Ratio)	– Gradient of	a Straight Line			
		– Equations of a	_							
		Chapter – 12 (Pg	g.No 31:	5 – 367)						
		Unit – 2		177 .	ъ					
		Arithmetic, Geom	etric and	l Harmoni	c Prog	ressions				
Course Outlin	e	Chapter - 7								
		Unit – 3								
		Integral Calculus:	Integrat	tion. Mean	ing ar	d Rules of Inte	egration –			
		Integration by Sul	_		_		•			
		Integration – App		-						
		(Trigonometric l				ed)				
		Chapter – 13 (Pg	g.No : 5	35 - 594)		ŕ				
		Unit – 4		·						
		Interpolation: Binomial, Newton and Lagrange's Method								
		Chapter - 22								
		Unit – 5								
		Matrices – Meaning and Operations – Matrix inversion – Solutions to								
		Linear Equations								
		Chapter – 14.								
Recommended	l Text	Business Mathematics – P.R. Vittal, Margham Publication,								
		Reprint 20	014.							
D.f D. al		1.D.	3.6.4	.: D	<u> </u>	1 . 1777	. 17			
Reference Book	S					ncheti and V.K	. Kapoor			
		2.Business								
		3.Business Mathematics – A.P. Varma 4.Business Mathematics – R.S. Soni								
		4.Dusiness maniemanes – R.S. Som								
e-Resources:		1. http://matl	nworld.v	volfram.co	m					
		2. http://www	w.univie	.ac.at/futu	re.med	lia/moe/galerie	.html			
		1								

Title of the Co	urse	BUSINESS S	STATIS	TICS AN	D OPI	ERATIONS R	ESEARCH – I	
Paper Numb	er				III			
Category	Allie d	Year Semester	III	Credits	5	Course Code		
		Unit – 1 Introduction – Cla Diagrammatic and					data –	
Course Outline		Chapter 1, 2, 3, 4 Unit – 2 Measures of Cent Range, Quartile D Measures of Skew Chapter 5, 6	Deviation	•				
	Unit – 3 Correlation – Karl Pearson's Coefficient of Correlation – Spearman' Correlation-Regression Lines and Coefficients. Chapter 8, 9							
		Unit – 4 Introduction to OR–Linear Programming Formulation–Graphical and Simplex method to solve LPP with all constraints of less than or equal to type only (Simple Problems only)						
		Chapter 15						
		Unit – 5 Network Analysis – PERT and CPM (no crashing)						
		Chapter 24						
Recommended 7	Гext	Dr. P.R.Vittal Research,Ma				perations		
Reference Books	5	 Dr.S.P.Rajagopalan ,R.Sattanthan, Business Statistics & Operations Research, Margham Publications. Dr.S.P.Gupta, Statistical Methods Gupta and Hira, Operations Research, S.Chand. Handy and A.Taha, Operations Research, Macmillan Publishers 						
e-Resources:		http://nptel.ac.in						

Title of the Co	urse	BUSINESS STATISTICS AND OPERATIONS RESEARCH – II								
Paper Num	ber				IV					
Category	Allie d	Year Semester	II IV	Credits		Course Code				
		Unit - 1 Time Series Analysis – Trend – Seasonal Variation – Cyclical variations. Chapter 12								
Course Outline	e	Unit – 2 Index Numbers – Chain and Fixed Living Index.		_						
		Unit – 3 Probability – Add Conditional proba	Chapter 13 Unit – 3 Probability – Addition and Multiplication Theorem – Conditional probability – Baye's Theorem (without proof) – Simple problems.							
		Chapter 14								
		Unit – 4 Assignment and Transportation Problems.								
		Chapter 16, 17								
		Unit – 5 Game Theory - G Chapter 15 (Bool		th saddle	– Don	ninance – Grap	phical Method.			
Recommended 7	Γext	Dr. P.R. Vittal, Business Statistics and Operations Research, Margham publications								
				l, V. Malir ications (U		erations Resear V)	rch,			
Reference Book	1. Dr.S.P.Rajagopalan ,R.Sattanthan, Business Statistics & Operations Research, Margham Publications. 2. Dr.S.P.Gupta, Statistical Methods 3. Gupta and Hira, Operations Research, S.Chand. 4. Handy and A.Taha, Operations Research, Macmillan Publishers									
e-Resources:		http://nptel.ac.in								

Title of the Co	ourse	ALLIED MATHEMATICS-I								
Paper Num	ber]	[
Cotogowy	Allied	Year	I	Credits	5	Course				
Category	Ameu	Semester	I	Creatis	5	Code				
Objectives of th Course .	e	 Students gain knowledge about the basic concepts of Algebra, Theory of Equations. They also gain the basic knowledge in Matrices, Trigonometry and Differential Calculus. 								
Unit – 1 Algebra and Numerical Methods: Algebra: Summation of series - simple problem Numerical Methods: Operators E, Δ,∇ differen Raphson method- Newton's forward and backs formulae for equal intervals, Lagrange's interper Chapter 2, Section 2.1.3, 2.2, 2.2.1, 2.3, 2.3.3 Chapter 3, Section 3.4.1 and Chapter 5, Section 2.1.3 chapter 5, Section 3.4.1 and Chapter						erence tables- ackward interpreterpolation for 3.3	oolation mula.			
		Unit – 2 Matrices: Symme Hermitian and Ur Cayley-Hamilton of inverse of matr Chapter 4, Section	nitary ma theorem rix using	ntrices. Eig (without) Cayley - I	gen valu proof) - Hamilto	ues and Eigen- – verification- on theorem.	vectors,			
		Unit – 3 Theory of Equation irrational roots, contransformation of constant, reciproce Chapter 3, Section Unit – 4	ons: Polyomplex requation al equation 3.1 to 3	vnomial eq roots, symi n by increa ion-simple 3.4.1	uations metric b ssing or proble	s with real coe functions of ro r decreasing ro em.	oots, oots by a			
		Trigonometry: Expansions of $sin(n\theta)$ and $cos(n\theta)$ in a series of powers of $sin\theta$ and $cos\theta$ - Expansions of $sinn\theta$, $cosn\theta$, $tann\theta$ in a series of sines, cosines and tangents of multiples of " θ " - Expansions of $sin\theta$, $cos\theta$ and $tan\theta$ in a series of powers of " θ " - Hyperbolic and inverse hyperbolic functions. Chapter 6, Section 6.1 to 6.3.								
		Unit – 5 Differential Calcu Leibnitz theorem Curvature and rac and minima of fur Chapter 1, Section	(without lius of cunctions of	t proof) an urvature in of two vari	d appli Cartes ables- S	cations, Jacob sian co-ordinat	ians, es, maxima			
Contents and treatment as in		Allied Mathemati Udayabaskaran, S	cs, Volu	me I and I	I, by P	. Duraipandiar	and S.			

Reference Books	1. S. Narayanan and T.K. Manickavasagam Pillai – Ancillary
	Mathematics, S. Viswanathan Printers, 1986, Chennai.
	2. Allied Mathematics by Dr. A. Singaravelu, Meenakshi Agency.
e-Resources:	1. http://www.themathpaage.com
	2. http://nptel.ac.in

Course outcomes: At the end of the course, students will be able to

CO1	Understand the concepts of Summation of Series
CO2	Understand the concepts of Cayley Hamilton Theorem and inverse matrices
CO3	Understand the concepts of teor of eqations
CO4	Understand the knowledge about expansions, hyperbolic and inverse hyperbolic
	functions
CO5	Understand the concept of Leibnitz theorem and functions of two variables

Mapping of Course Outcomes to Program Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	2	2	1	1	2	2	2	1	2	2
CO2	2	2	1	2	2	1	1	1	2	2
CO3	3	2	1	1	2	1	2	2	3	2
CO4	2	2	1	1	3	2	2	2	2	3
CO5	3	2	2	1	2	2	2	2	2	2

 $3-High \hspace{1cm} 2-Medium \hspace{1cm} 1-Low$

Title of the Course	ALLIED MATHEMATICS-II							
Paper Number				-	II			
Cate Allied gory	Year Semes ter	II	Credits	5	Course Code			
Objectives of the Course	E	Equations	s.			al Calculus, Differential place Transforms and		
	Unit – 1	ector Ca	alculus					
Course Outline	$\int_{0}^{\pi/2} Sin^{n} x dx$ Fourier s	$\int_{0}^{\pi/2} Cos$ series for 2: Section	$\int_{0}^{\pi/2} x dx, \int_{0}^{\pi/2} \sin x dx$ functions on 2.7 & 2.	n ^m xCa		ion formulae- being positive integers),		
	Unit – 2 Differential Equations: Ordinary Differential Equations: second order non- homogeneous differential equations with constant coefficients of the form ay" +by'+ cy = X where X is of the form $e^{\alpha x} \cos \beta x$ and $e^{\alpha x} \sin \beta x$ -Related problems only. Partial Differential Equations: Formation, complete integrals and general integrals, four standard types and solving Lagrange's linear equation P p +Q q= R. Chapter 5: Section 5.2.1, Chapter 6: Section 6.1 to 6.4							
	simple proof linear	Transfor roperties differen	s, inverse I tial equati	Laplace	transforms, A	Estandard functions and Application to solution er-simple problems.		
	Unit – 4 Vector Differentiation: Introduction, Scalar point functions, Vector point functions, Vector differential operator Gradient, Divergence, Curl, Solenoidal, Irrotational, identities. Chapter 8, Section 8.1 to 8.4.4							
	Unit – 5 Vector Integration: Line, surface and volume integrals, Gauss, Stoke's and Green's theorems (without proofs). Simple problems on these. Chapter 8, Section 8.5 to 8.6.3.							
Contents and treatment as in			ics, Volun S. Chand I		l II, P. Duraipations.	andian and S.		

Reference Books	1. S. Narayanan and T.K. Manickavasagam Pillai – Ancillary
	Mathematics, S. Viswanathan Printers, 1986, Chennai.
	2. Allied Mathematics by Dr. A. Singaravelu, Meenakshi Agency
e-Resources:	1. http://www.sosmath.com
	2. http://www.analyzemath.com/Differential_Equations/applications.htm

Course outcomes: At the end of the course, students will be able to

CO1	Understand the concepts of integral calculus
CO2	Understand the concepts of Non-Homogenous and Partial Differential Equations
CO3	Understand the Laplace Transform
CO4	Understand the concepts of Vector Differentiation
CO5	Understand the concepts of Vector Integration

Mapping of Course Outcomes to Program Specific Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	2	2	1	1	2	2	2	1	2	2
CO2	2	2	1	2	2	1	1	1	2	2
CO3	3	2	1	1	2	1	2	2	3	2
CO4	2	2	1	1	3	2	2	2	2	3
CO5	3	2	2	1	2	2	2	2	2	2

3-High 2-Medium 1-Low

M.COM

Title of the Course		ADVANCED STATISTICS					
Paper Number		I					
		Year	I	G 114	_		
Category Elective	Semester	I	Credits	5	Course Code		
		Unit – 1		1			
		Probability and	Theoret	ical Distri	butio	ns	
		Probability – Definition - addition theorem - Multiplication theorem-					
		conditional proba	bility -E	Baye's theor	rem-	simple problen	ns
		Theoretical Distributions-Binomial ,Poisson and Normal distributions-					
		simple problems.					
		Unit – 2					
		Statistical Infere			_	_	
Course Out	tline	of hypothesis- pro	ocedure-	two types	of err	or- one and two	o tailed tests -
		standard error - la	arge san	nple — test	for sp	pecified propor	tion –tes for
		difference between				r specified me	ean —test fo
		difference of mean of two samples.					
		Unit – 3					
		Testing of Hypothesis for Small samples					
		Small samples: t-test: specified mean, equality of two means- paired t-					
		test, F-test -equality of variances- Chi square test - independence of					
		attributes and goodness of fit.					
		Unit – 4					
		Analysis of Variance and Decision Theory					
		Analysis of variance-one way and two-way classification- Pay off table-					
		Maximin principle - Minimax principle - Baye's Principle-Decision tree Analysis					
		Unit – 5					
		Correlation and Regression					
		Correlation-types of Correlation-Karl Pearson's Coefficient of					
		correlation - Rank correlation Coefficient-Regression - Regression					
		equations- partial and multiple correlation (upto three variables)-partial					
		and multiple regressions (upto three variables).					
		1 0		` -			
Reference B	ooks	*				ultan Chand, 20	
		2. P.R. Vitta	l, Quant	itative Tecl	nniqu	es, Margham P	ublications.
e-Resources	:	http://nptel.ac.in					
							_

Title of the Course		RESOURCE MANAGEMENT TECHNIQUE					
Paper Number		II					
Category	Elective	Year Semester	I	Credits	5	Course Code	
Course Out	tline	Unit – 1 Transportation more problems-Initial brown minima, column approximation more chapter 7 -7.1 to Unit – 2 Assignment Problem assignment Problem Sequent machines-Proces no jobs through more chapter 8:8.1 to Chapter 14:14.1 Unit – 3 Game Theory-Pumethod.	easic feasiumn minethods - 7.5 elem- Baestricted cing prosing of remachine 8.8 to 14.7	sible solutinima, least Optimus lanced and assignment blem: - Protess s - Process	on - Not cost remains a cost remains	orth west corn nethod and V tion — Modi n lanced — Mini em - travelling g of n jobs thr nachines- Proc obs through m	er rule, the ogel's nethod. imization and g salesman rough 2 cessing each of a machines.
		Chapter 16: 16.1 to 16.7 Unit – 4 Replacement Model1-Model-Replacement of an item whose maintenance cost increases with time and money value is not changed. Model 2-Replacement of an item whose maintenance cost increases with time and money value is changes with time. Model 3 - Replacement of items due to sudden Failure - Model 4-Staff replacement.(without proof) Chapter 11: 11.1 to 11.4 Unit – 5					
		PERT and CPM (Crashing Exclude Chapter 15: 15.1	ed)– PE		_		Path
Recommende		Sundaresan, Ganapathy Subramanian, Resource Management Technique –A.R.Publications					
Reference B	ooks	P.R.Vittal & V. M Publications.2007		perations F	Researc	h, Margham	
e-Resources	•	http://nptel.ac.in					

Non – Major Elective

Course Title: Mathematics for Competitive Examinations-I

Course	NME-I	Credits	
Exam Hours		CIA Marks	50
		ESE Marks	50

CONTENTS OF MODULE		
Unit I: Average, Problems on ages		
Unit II: Clocks and calendar		
Unit III: Profit and Loss		
Unit IV: Coding and Decoding test		
Unit V: Number, Rank and Order test		

Contents and treatment as in:

- 1. Quantitative Aptitude for Competitive Examinations by Dr. R.S. Aggarwal.
- 2. S.Chands's Exam success series, General Intelligence and Test of Reasoning, Second Edition.

Unit I	Chapter 6, 8
Unit II	Chapter 27, 28
Unit III	Chapter 30
Unit IV	Chapter 14, 15 (Book 2)
Unit V	Chapter 11 (Book 2)

Reference Books:

1. Upkar's Verbal Reasoning for Competitive Exams by Dr. Lal & Kumar.

Course Title: Mathematics for Competitive Examinations-II

Course	NME -II
Exam Hours	

Credits	
CIA Marks	50
ESE Marks	50

CONTENTS OF MODULE
Unit I: Time and Distance,
Unit II: Time and Work
Unit III: Problems on Trains, Boats and streams
Unit IV: Blood relation and Family
Unit V: Series and Classification

Contents and treatment as in:

1. Quantitative Aptitude for Competitive Examinations by Dr. R.S. Aggarwal.

2. S.Chands's Exam success series, General Intelligence and Test of Reasoning, Second Edition.

Unit I	Chapter 17,18
Unit II	Chapter 13
Unit III	Chapter 20,
	Chapter 26
Unit IV	Chapter 18 (Book 2)
Unit V	Chapter 1, 3 (Book 2)

Reference Books:

1. Upkar's Verbal Reasoning for Competitive Exams by Dr. Lal & Kumar.