DWARAKA DOSS GOVERDHAN DOSS VAISHNAVCOLLEGE

(Autonomous – Affiliated to the University of Madras)
College with Potential for excellence

1

Gokul Bagh, 833, Periyar E.V.R. High Road, Arumbakkam, Chennai – 600 106.

Phone: 044-23635101, 23635102 Fax: 044-23635103
e-mail: principal@dgvaishnavcollege.edu.in website: www.dgvaishnavcollege.edu.in

DEPARTMENT OF BIOCHEMISTRY

MSc Biochemistry Program code 24

Choice Based Credit System (CBCS) Outcome Based Education (OBE)

Syllabus effective from 2022-23 Batch onwards

Contents

Institution

VISION

MISSION

DEPARTMENT OF BIOCHEMISTRY

VISION

MISSION

PROGRAM EDUCATION OBJECTIVES (PEOs)

POST GRADUATE

PROGRAM OUTCOMES (PO) IN RELATION TO GRADUATE ATTRIBUTE8

M.Sc BIOCHEMISTRY

PROGRAM SPECIFIC OUTCOMES (PSO) IN RELATION TO GRADUATE ATTRIBUTES

M.Sc BIOCHEMISTY

SCHEME OF SEMESTER M.Sc., PROGRAM

TOTAL NO OF CREDITS

M.SC., BIOCHEMISTRY FIRST SEMESTER

Course Title: BIOMOLECULES (CORE PAPER I)

Course Title: INTERMEDIARY METABOLISM (CORE PAPER II)

Course Title: PLANT BIOCHEMISTRY-I SEMESTER (CORE PAPER III)

Course Title: ENZYMES (CORE PAPER IV)

Course Title: MEMBRANE BIOCHEMISTRY (Elective Paper - I)

Course Title: PHYTOMEDICINE (Elective Paper I)
Course Title: STEM CELL BIOLOGY (Elective Paper I)

Major Practical –I BIOMOLECULES AND INTERMEDIARY METABOLISM

Major Practical –II ENZYMES AND PLANT BIOCHEMISTRY

MSC., BIOCHEMISTRY SECOND SEMESTER

Course Title: ANALYTICAL BIOCHEMISTRY (CORE PAPER V)

Course Title: HUMAN PHYSIOLOGY AND NUTRITION (CORE PAPER VI)

Course Title: MOLECULAR BIOLOGY (CORE PAPER VII)

Course Title: BIOTECHNOLOGY (Elective Paper - II)

Course Title: ECOLOGY AND POPULATION EDUCATION (Elective Paper II)

Course Title: MICROBIOLOGY (Elective Paper II)

Course Title: BIOETHICS, IPR AND HUMAN RIGHTS (Elective Paper - III)

Course Title: ORGANIZATIONAL BEHAVIOUR (Elective Paper III)

Course Title: GOOD LABORATORY PRACTICES (Elective Paper III)

Course Title: MAJOR PRACTICAL-1II ANALYTICAL BIOCHEMISTRY & MICROBIOLOGY

Course Title: MAJOR PRACTICAL-IV MOLECULAR BIOLOGY & NUTRITION

M.SC., BIOCHEMISTRY THIRD SEMESTER

Course Title: ADVANCED CLINICAL BIOCHEMISTRY (CORE PAPER VIII)

Course Title: BIOSTATISTICS (CORE PAPER IX)

Course Title: RESEARCH METHODOLOGY (CORE PAPER X)

Course Title: HORMONAL BIOCHEMISTRY (Elective Paper IV)

Course Title: ADVANCED MEDICAL LABORATORY TECHNOLOGY (Elective Paper IV)

Course Title: BIOENTREPRENEURSHIP MANAGEMENT (Elective Paper IV)

Course Title: BIOINFORMATICS (ADVANCED)

Course Title: MAJOR PRACTICAL-V ADVANCED CLINICAL BIOCHEMISTRY

Course Title: MAJOR PRACTICAL-VI BIOINFORMATICS & IMMUNOLOGY

M.SC., BIOCHEMISTRY FOURTH SEMESTER

Course Title: IMMUNOLOGY (CORE PAPER X)

Course Title: NUTRIGENOMICS (ADVANCED)

Course Title: LIFE STYLE DISEASE AND PREVENTION (Elective Paper V)

Course Title: HEALTHCARE MANAGEMENT (Elective PaperV

Course Title: FREE RADICAL BIOLOGY (Elective PaperV

Course Title: PROJECT

Institution

VISION

TO IMPART KNOWLEDGE BY ESCALATING TO ACTIVE LEARNING FROM ROTE LEARNING THAT-

- Ignites Wisdom
- Challenges Status Quo
- Strengthens Social Equality
- Elevates Human Values and Universal Oneness
- Recognizes Indian Tradition and Culture

MISSION

- Curriculum that makes student competent to contribute economically and intellectually.
- Offer an environment of learning that encourages innovation and excellence.
- Promote research and development
- Best of facilities with the Best of technology
- Provide an environment for all round growth of the student
- Quality in every activity undertaken by the student and the faculty
- Instilling pride in serving the society and in being the citizen of this country.

DEPARTMENT OF BIOCHEMISTRY

VISION

To be the center for excellence in Biochemistry by/and producing students highly skilled in the latest tools and technologies and making them to enhance the quality of life. To become a leader in near future in biochemistry by integrating teaching & learning, learning & skills, skills & employability, learning & research and research & service.

MISSION

M1	To provide Better understanding of the subject with sound knowledge in theory & practical
M2	To cultivate the ability to apply creativity and independent thinking resulting in bridging the gap between industry and academics to meet the industrial demands.
M3	To follow a multidisciplinary research strategy by harnessing all the available resources
M4	To apply the biochemical knowledge in solving human life and environment related problems.

PROGRAM EDUCATION OBJECTIVES (PEOs) POST GRADUATE

Our programme will produce graduates who

Our prog	gramme will produce graduates who
PEO1	Will demonstrate the knowledge, understanding and application, of the various concepts related to Biochemistry.
PEO 2	will have sound foundation in scientific knowledge required to solve practical challenges during their work as a professional.
PEO 3	Will possess professional, ethical & effective communication skills and critical thinking and have problem solving ability with multidisciplinary approach.
PEO 4	will be able to design, plan and execute small scientific projects.
PEO5	Will have a sense of belonging to the Institution and strengthen all departmental activities through their support.

PEO to Mission Statement Mapping

MISSION STATEMENTS	PEO 1	PE O2	PEO 3	PEO 4	PE O5
M1	3	3	3	3	3
M2	3	3	3	3	3
M3	3	3	3	3	3
M4	3	3	3	3	3

CORRELATION: 3- STRONG 2- MEDIUM 1- LOW

PROGRAM OUTCOMES (PO) IN RELATION TO GRADUATE ATTRIBUTES M.Sc BIOCHEMISTRY

By the	e end of the programme, the graduates will be able to
DO1	To attain suitable scientific knowledge and technical skills to realize, calibrate and
PO1	develop innovative processes / skills for creation of inventive products which are
	beneficial to society.
D 0 2	To implement discipline, professionalism, team spirit, communication skills, social
PO2	and ethical commitment in the post graduates in order to embellish leadership roles
	expediting perfection in different sector with a categorical professional
	distinctiveness, business savvy, international recognition and imperishable
	expansion.
	To be habituated with the emerging expanses of erudition and their applications in
PO3	several domains of biological sciences and to enlighten the students of its
103	relevance in forthcoming studies
DO 4	To enhance the insight of research-oriented knowledge in conjunction with
PO4	literature survey, design of experimental methodology, analysis and interpretation
	of results and draw valid conclusions.
D.0.5	To provoke entrepreneurship among the students along with strong ethics and
PO5	communication skills
PO6	To engage in Lifelong learning and enduring proficient progress

Mapping of POs TO PEOs

PEO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO6
PEO 1	3	3	3	3	3	3
PEO 2	3	3	3	3	3	3
PEO 3	3	3	3	3	3	3
PEO 4	3	3	3	3	3	3
PEO 5	2	2	2	2	2	2

3-Strong Correlation 2- Medium Correlation 1- Low Correlation

PROGRAM SPECIFIC OUTCOMES (PSO) IN RELATION TO GRADUATE ATTRIBUTES M.Sc BIOCHEMISTRY

After su	ccessful completion of 2 years MSc programme the students will be able to
PSO1	Understanding of biological principles and the ability to make connections across different levels of biological organization, from molecules to cells, to whole organisms, populations and ecosystems.
PSO2	Students should be able to demonstrate advanced knowledge and understanding in macromolecular structure, enzyme kinetic behavior, gene expression, metabolic control, molecular signaling, immunity etc
PSO3	Students should be able to use their practical skills of wide range of biochemical techniques in various laboratory investigations. Students should be able to develop generic skills that allow them to analyze, interpret and relate known and unknown biological phenomenon
PSO4	Students should be able to communicate what they know through precise language, diagrammatic representation, graphical mode and using computational tools
PSO5	Post-graduates will be able to identify problems related to environment, analyse and derive valid conclusions with fundamental knowledge in biology and computers. Apply reasoning to assess societal, health, safety and legal issues and understand his responsibilities by undergoing waste recycling process.

Mapping of POs TO PSOs (MSc Program

PSO/PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
PSO 1	3	3	3	3	3	3
PSO 2	3	3	3	3	3	3
PSO 3	3	3	3	3	3	3
PSO 4	3	3	3	3	3	3
PSO 5	2	2	2	2	2	2

3-Strong Correlation 2- Medium Correlation 1- Low Correlation

DEPARTMENT OF BIOCHEMISTRY SCHEME OF SEMESTER M.SC., PROGRAM M.SC BIOCHEMISTRY SEMESTER I

Sl.	Course category	Course		edit strib		on	Over all Credits	Total Contact Hours	Marks		
NO			L	T	P	S		/Week	CIA	ESE	Total
Part - III	Core paper-I	Biomolecules 2224101	3	0	1	0	4	4	50	50	100
	Core paper-II	Intermediary Metabolism 2224102	3	1	0	0	4	4	50	50	100
	Core paper-III	Plant Biochemistry 2224103	4	0	0	0	4	4	50	50	100
	Core paper-IV	Enzymes 2224104	2	1	0	1	4	4	50	50	100
	Elective I	Membrane Biochemistry22410 5A/Phytomedicine 224105B/Stem cell biology2224105C	4	0	0	0	3	4	50	50	100
	Core Practical I	Major Practical –I Biomolecules and Intermediary metabolism 2224106	0	0	3	1	2	5	50	50	100
	Core Practical II	Major Practical –II Enzymes and Plant Biochemistry 222410	0	0	3	1	2	5	50	50	100
Part - IV		Soft Skill	2	0	0	0	2	-	50	50	100
Total					1		25	30	400	400	800

IM.SC BIOCHEMISTRY II SEMESTER

		Credit				Total					
Sl.	Course	Course	Dis	stribu	ıtion		Ove	Contac t Hours /Week	Marks		
NO	categor y		L	T	P	S	r all Cre dits		CIA	ESE	Total
	Core Paper- V	Analytical Biochemistry 2224208	3	1	0	0	4	4	50	50	100
	Core Paper- VI	Human Physiology and Nutrition2224209	3	1	0	0	4	4	50	50	100
	Core Paper- VII	Molecular Biology2224210	3	0	1	0	4	4	50	50	100
Part I	Elective paper II	Biotechnology 2224211A/Ecology & Population Education2224211B/M crobiology2224211C	3	0	0	1	3	4	50	50	100
	Elective — III	Bioethics, IPR & HR 2224212A/ Organization behavior222412B/ Good lab practices222412C	3	0	0	1	3	4	50	50	100
	Core practi Cal	Major practical -III Analytical Biochemistry & Microbiology 2224213	0	0	3	1	2	5	50	50	100
	Core Practical	Major Practical –IV Molecular biology and Nutrition222413	0	0	4	0	2	5	50	50	100
Part		Soft Skill	-	-	-	-	2	-	50	50	100
IV											
	summer vaca hospital, ind	ernship will be carried out ation of the first year for 4 ustry at the end of II sement in the third Semester Mark	weel	ks in a Credi	any ts wi	11	2				
TOT		m me mna semester wark	s sia	iteme	11 .		26	30	400	400	800

II M.SC BIOCHEMISTRY III SEMESTER

Sl. NO	Course category	Course		edit stril		ion	Over all Credits	Total Contact Hours	Mark	S	
		Course	L	T	P	S	Civalis	/Week	CIA	ESE	Total
	Core paper VIII	Advanced Clinical biochemistry22243 15	4	0	0	0	4	5	50	50	100
Part	Core Paper-IX	Biostatistics 2224316	3	0	1	0	4	4	50	50	100
I	Core Paper-	Research Methodology22243	4	0	0	0	4	4	50	50	100
	Elective paper-IV	Hormonal biochemistry/22243 18A Advanced MLT2224318B/ Bioentrepreneurshi p2224318C	3	0	0	1	3	4	50	50	100
	Core Practical	Major Practical –V ADVANCED CLINICAL BIOCHEMISTRY2 24320	0	0	4	0	2	4	50	50	100
	Core Practical	Major Practical –VI BIOINFORMATICS & IMMUNOLOGY 22243212					2	4	50	50	100
	Advanced	Bioinformatics2224 3192	4	0	0	0	3	5	50	50	100
Part – II		Soft Skill	2	0	0	0	2	-	50	50	100
Total							24	30	400	400	800

M.SC BIOCHEMISTRY IV SEMESTER

Sl. NO	Course category			edit strib		n	Over all	Total Cont act Hours/ Week	Marks		
		Course	L	Т	P	s	Credits		CIA	ESE	Total
	Core paper-	Immunology 2224422	4	0	0	0	4	5	50	50	100
Part - I	Core Project	Project – Dissertation222 4425	0	0	3	1	4	20	50	50	100
	Advanc Ed	Nutrigenomics2 224423	3	1	0	0	3	5	50	50	100
	Elective V	Lifestyle disease & prevention A/ Free radical biologyB / Healthcare Management224 424AC	3	0	0	1	3	5	50	50	100
	Part – II	Soft Skill	0	0	2	0	2		50	50	100
TOTAL							16	30	250	250	500

DEPARTMENT OF BIOCHEMISTRY SCHEME OF SEMESTER M.SC., BIOCHEMISTRY

TOTAL NO OF CREDITS

S.No	Course	No of papers	Total Credit
1.	Core Theory paper	11 x 4	44
2.	Core Practical	6 x 2	12
3.	Elective Paper	5 x 3	15
4	Advanced Paper	2 x 3	06
5.	Soft Skill	4 x 2	08
6	Summer Internship	1 x 2	02
7.	Core project	1 x4	04
TOTA	L		91

TOTAL NO OF CREDITS

Value added course 30 hours/ 2 Credits

M.SC., BIOCHEMISTRY FIRST SEMESTER

Course Title: BIOMOLECULES (CORE PAPER I)

		`	,
		Credits	04
L:T:P:S	3:0:1:0	CIA Marks	50
Exam	03	ESE Marks	:50
Hours			

CourseOutcomes: At the end of the Course, the Student will be able to:

CO	CO Statement
NUMBER	
CO1	Classify and explain the structure, biological importance and physico chemical properties of carbohydrates, from monosaccharides to polysaccharides, relate the importance of sugar derivatives and bacterial cell wall polysacchharides
CO2	Identify the structure of amino acids, classify proteins, explain their properties and relate the structural levels of organization of proteins
CO3	Describe the tertiary, quaternary structure, forces stabilizing the structure of proteins and explain the chemical synthesis of peptide
CO4	Illustrate the structure of nucleotides, distinguish DNA and RNA and describe the structure of DNA, its properties, types of RNA and their biological functions
CO5	Define and classify lipids with examples, explain the properties of fats and describe the structure and biological functions of phospholipids, glycolipids, sterols and terpenes

Mapping of Course Outcomes to Program specific Outcomes:

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	1	3
CO2	3	3	3	2	3
CO3	3	3	3	2	3
CO4	3	3	3	2	3
CO5	3	3	3	2	3

CORRELATION: 3-STRONG 2- MEDIUM 3- LOW

S.No.	Content of Module	Hrs	CO s
MO1	Definition, nomenclature, classification, structure, chemistry and function of Carbohydrates:- occurrence, classification and chemical properties of Monosaccharides:- structure and biological importance of sugars, their derivatives, NTPs, lactones, glycosides — Disaccharides, Lactose, Maltose, Sucrose — Oligosaccharides — structure and biological importance-Homoglycans; starch, glycogen, cellulose, dextrin, inulin, Heteroglycans — mucopolysaccharides — cell surface carbohydrates; bacterial cell wall polysaccharides.		CO1
MO2	Classification, structure and properties of aminoacids - Classification and biological functions of proteins - Primary structure of proteins and sequence determination. Peptide bond and its salient features - secondary structure $-\alpha$ helix, β -pleated sheet and turns- Ramachandran Plot. Super secondary structures, motifs- helix-loophelix, hair pin, β -motif, β - α - β motif. Conformational study of collagen.	20	CO2
МОЗ	Tertiary structure of proteins (myoglobin) –quaternary structure of proteins of hemoglobin. Forces that stabilize the protein structure Chemical synthesis of Peptide, Folding of proteins.	10	CO3
MO4	Structure of Purine, Pyrimidine, nucleosides and nucleotides - Major classes of RNA, their structure and biological function. Watson and Crick Model, A,B, and Z forms of DNA. DNA super coiling - Properties of DNA – hypochromicity, hyperchromicity, denaturation and renaturation, Cot curve, C value paradox. Maxam Gilbert method, Sangers dideoxy method and enzymatic methods of sequence analysis. Chemical synthesis of oligonucleotides.	15	CO4
MO5	Definitions, general structure of fatty acids- biological functions of lipids-properties of lipids-classification of lipids-simple-fats, oil, waxes. compound lipids, phospholipids, sulpholipids, glycolipids. Derived lipids-structure and function of important steroids- cholesterol, bile acids. Terpenes-mono,di,poly andsesqueterpenes,Carotenes and xanthophylls.	15	CO5

RECOMMENDED BOOKS

- 1. J. L. Jain, N. J. (7th ed 2016). Fundamentals of Biochemistry 7th edition. S. Chand @ Co.Ltd ISBN: 9788121924535
- 2. Sathyanarayana. (2017). Biochemistry. Elsevier ISBN: 9788131236017
- 3. David.L.Nelson, M. M. (7th ed 2017). *Lehninger principles of Biochemistry .* Freeman. W.H. and Company ISBN 10: 1464126119 / ISBN 13: 9781464126116
- 4. Robert K.Murray, D. A. (2018). *Harper's Illustrated Biochemistry* (28th ed.). The McGraw-Hill Companies ISBN-10:0071625917 / ISBN-13:978-0071625913

REFERENCE BOOKS

1. Rodwell, V. (2018). Harper's Illustrated Biochemistry. McGrew. Hill.

2Jeremy M. Berg, L. e. (2019). *Biochemistry*. WH Freeman - ISBN-10: 812243049X, ISBN-13: 978-8122430493 3Donald Voet, C. W. (2012). *Principles of Biochemistry* (4th ed.). Wiley - ISBN 10: 1118092449 / ISBN 13: 9781118092446

M.SC., BIOCHEMISTRY FIRST SEMESTER

Course Title: INTERMEDIARY METABOLISM (CORE PAPER II)

Course Code			: 04	
L:T:P:S	: 3:1:0:0	CIA Marks	: 40	
Exam Hours	: 03	ESE Marks	: 60	

Course Outcomes: At the end of the Course, the Student will be able to:

CO NUMBER	CO Statement			
	Define metabolism, acquire a wide knowledge on the metabolism of the			
CO1	glucose and identify the steps involved in biochemical pathways that			
	produceATP such as glycolysis, TCA cycle, ETC.			
CO2	Explain the oxidation and synthesis of fatty acids, identify the steps involved in			
	metabolism of cholesterol, synthesis of prostaglandins, leukotrienes and			
	thromboxanes.			
Explain How biochemical energy is generated in cells using principles of				
thermodynamics (free energy enthalpy) using coupled reactions to sh				
	an endergonic reaction can occur by coupling with exergonic reaction			
CO4	Gain knowledge on synthesis of urea and other biologically important amines.			
CO5	Write the chemical reactions for the individual steps in the purine and			
CO3	pyrimidine metabolism.			

Mapping of Course Outcomes to Program specific Outcomes:

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	3	3
CO2	3	3	2	3	3
CO3	3	3	1	3	3
CO4	3	3	2	1	3
CO5	3	3	1	1	3

CORRELATION: 3-STRONG 2- MEDIUM 3- LOW

S.No.	Content of	Hrs	Cos
	Module		
MO1	CARBOHYDRATES; Definition of Metabolism, Anabolism and Catabolism. Carbohydrate metabolism: Aerobic and anerobic glycolysis and energetics of glycolysis. Pyruvate Dehydrogenase Complex. TCA cycle and energetics. Gluconeogenesis, Metabolism ofglycogen, Pentose Phosphate Pathway	17	CO1
MO2	LIPID METABOLISM- Biosynthesis of FA, sphingolipids, phosphoglycerides - Beta oxidation, Alpha oxidation, Omega oxidation. Biosynthesis and degradation of cholesterol, Role of HMG CoA Reductase - arachidonic acid pathway – eicosanoids.	13	CO2
МОЗ	BIOLOGICAL OXIDATION: ETC – Redox potential – redox couple – action potential – free energy - Role of High energy phosphates, Components, sequence and Inhibitors of electron transport chain. Oxidative phosphorylation- the chemiosmotic hypothesis. F0 F1 ATP synthase. ATP biosynthesis. Uncouplers, ATP/ADP exchange, malate aspartate/glycerol phosphate shuttle	17	CO3,CO5
MO4	AMINO ACID METABOLISM: Transamination and its mechanism, oxidative and non-oxidative deamination, decarboxylation-urea cycle and its regulation. Conversion of aminoacids to specialized products. Serotonin, gamma aminobutyric acid, dopamine, epinephrine, norepinephrine, creatinine, creatine.	15	CO4, CO5
MO5	Nucleic Acid metabolism – Synthesis of Purine and pyrimidine – Denovo and Salvage pathway. Regulation - Degradation of purines and pyrimidines.	13	CO5

RECOMMENDEDBOOKS:

- 1. Sathyanarayana. (2017). Biochemistry. Elsevier ISBN: 9788131236017
- 2. Rodwell, V. (2018). Harper's Illustrated Biochemistry. McGrew. Hill.
- 3. David.L.Nelson, M. M. (7th ed 2017). *Lehninger principles of Biochemistry*. Freeman. W.H. and Company ISBN 10: 1464126119 / ISBN 13: 9781464126116

- 1. Jeremy M. Berg, L. e. (2019). *Biochemistry*. WH Freeman ISBN-10: 812243049X, ISBN-13: 978-8122430493
- 2. J. L. Jain, N. J. (7th ed 2016). Fundamentals of Biochemistry 7th edition. S. Chand @ Co.Ltd ISBN: 9788121924535
- 3. voet.J.G, D. V. (2010). Biochemistry (4th ed.). John Wiley & Sons Inc ISBN: 978-0-470-57095-1

M.SC., BIOCHEMISTRY FIRST SEMESTER

Course Title: PLANT BIOCHEMISTRY-I SEMESTER (CORE PAPER III)

		Credits	: 04
L:T:P:S	:4:0:0:0	CIA Marks	: 40
Exam Hours	: 03	ESE Marks	: 60

Course Outcomes: At the end of the Course, the Student will be able to:

CO NUMBER	CO Statement	
CO1	Summarize Photosynthesis	
CO2	Classify Plant Hormones And Explain Their Functions	
CO3	Discuss Secondary Metabolites In Plants. Illustrate Nitrogen Fixation By	
	Symbiosis Biochemistry Of Nitrogen Fixation	
CO4	Distinguish Between Types of Stress Tolerance in plants	
CO5	Evaluate The Anti Oxidant Defense In Plants	

Mapping of Course Outcomes to Program specific Outcomes:

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	1	3
CO2	3	3	1	2	1
CO3	3	3	2	1	3
CO4	3	3	2	1	1
CO5	3	3	3	1	1

CORRELATION: 3-STRONG 2- MEDIUM 1- LOW

S.No.	Content of	Hrs	Cos
	Module		
MO1	Photosynthesis - Pigments in photosynthesis, Light and	15	CO1
	Dark reactions, Proton gradient and ATP synthesis of		
	CHLOROPLAST. DCMU, regulation of photosynthesis,		
	CAM metabolism, RUBISCO, photorespiration.		
MO2	Plant hormones types and functions. Structure, mode of	15	CO2
	action, transport, distribution and physiological effect of		
	Auxin, Gibberillin, Cytokinins, ABA and Ethylene,		
MO3	Biofertilizers, Nitrate assimilation, structural features of	15	CO3,CO5
	nitrate reductase and nitrite reductase, incorporation of		
	ammonia into organic compounds, regulation of nitrate		
	assimilation. Nitrogen fixation – nodule formation –		
	regulatory factors involved in modulation – nif genes.		
MO4	Toxins of plant origin -mycotoxins,	15	CO4, CO5,
	phytohemagglutinins, lathyrogens, nitriles, protease		
	inhibitors, protein toxins. Stress metabolism in plants –		
	Environmental stresses, salinity, water stress, heat, chilling,		
	Stress due to heavy metals, radiations and their impacton		
	plant growth and metabolism, criteria of stress tolerance.		
MO5	Antioxidative defencesystem in plants – reactive oxygen	15	CO5
	species and their generation, enzymic and non-enzymic		
	components of antioxidative defence mechanism –		
	peroxidase, glutathione, chlorophyll, pigments, carotenoids,		
	oxidative stress.		

RECOMMENDEDBOOKS:

- 1. Verma. (2015). Plant Physiology. Athena Academic ISBN: 9781910390016, 1910390011
- 2. Lincoln Taiz, A. M. (2018). *Fundamentals of Plant Physiology.* Oxford University Press-ISBN 10: 1605357901 ISBN 13: 9781605357904
- 3. MohitVerma, S. K. (2018). *Plant Physiology, Biochemistry and biotech.* S Chand-ISBN 10: 812190627X ISBN 13: 9788121906272

- 1. Jain, D. V. (2016). Fundamentals of Plant physiology. S Chand ISBN: 9789352533343
- 2. N. Shankar, H. S. (2005). *Plant Physiology and Biochemistry.* Rastogi Publications ISBN 10: <u>8171337856</u> / ISBN 13: <u>9788171337859</u>
- 3. Piechulla, H.-W. H. (2010). *Plant Biochemistry*. Academic Press ISBN 10: <u>0120883910</u> / ISBN 13: 9780120883912

M.SC., BIOCHEMISTRY FIRST SEMESTER

Course Title: ENZYMES (Core paper IV)

		Credits	: 04
L:T:P:S	: 2:1:0:1	CIA	: 40
		Marks	
Exam	: 03	ESE	: 60
Hours		Marks	

Course Outcomes: At the end of the Course, the Student will be able to:

CO NUMBER	CO Statement
CO1	Gain knowledge in relevant principles of enzyme, mechanism of enzyme kinetics, enzyme catalysis emphasizes on capability of the students to work in a group and
COI	gather the information.
CO2	Analyse and interpret the graphs based on kinetics data. Identification of Enzyme specificity of unknown samples using MM- Equation or by LB plot. Differentitation of enzyme catalysis by acid base, covalent metal ion and proximity orientation and coenzymes in enzyme catalysis shows the platform on the nature of enzymes.
СО3	Students will be familiarized with the terms such as activation energy, Lock and key theory and induce fit theory. Graduates get the knowledge of regulation of enzyme activity and its types can be able to apply in higher education. Distinguish the mechanism of action of specific enzymes such as chymotrypsin, carboxypeptidase, ribonuclease, lysoenzyme, abzymes and ribozymes
CO4	Determine Km and Vmax for competitive, non-competitive and uncompetitive inhibitors. To analyze the involvement of coenzymes in enzyme catalysis.
CO5	Comprehend the various methods for production, purification, characterization and immobilization of enzymes. Degrading the waste using microbes, isolating and immobilization of an enzyme produced by it can be used in food, pharmaceutical and textile industries. Commercialization of enzymes, envision the working of enzymes.

Mapping of Course Outcomes to Program specific Outcomes:

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	2	1	1
CO2	2	1	2	1	1
CO3	3	1	1	1	1
CO4	3	2	1	1	1
CO5	2	2	1	1	1

CORRELATION: 3-STRONG 2- MEDIUM 3- LOW

S.No.	Content of Module	Hrs	Cos
MO1	Introduction - chemical nature and general characterization - nomenclature, IUB system of enzyme classification - definitions with examples of holoenzyme, apoenzyme, isoenzymes, monomeric enzymes, oligomeric enzymes, multi-enzyme complexes, Coenzymes, cofactors, metalloenzymes, activators, inhibitors, active site, allosteric site, catalytic site, regulatory site on the enzyme molecule. Enzyme specificity, specific activity, enzyme units – IU, Katal and enzyme turnover number and specific activity.	17	CO1
MO2	Enzyme Kinetics - Introduction to chemical kinetics, rate and order of reactions. Derivation of Michaelis - Menton Equation. Line - Weaver and Burk plot, Eadie- Hofstee plot, Hanes plot - bi-substrate reactions - brie introduction to sequential and ping-pong mechanisms with examples. Factors affecting enzyme activity - enzyme concentration, substrate concentration, pH and temperature. Enzyme catalysis -acid - basecatalysis, Metal ion and proximity orientation effects	17	CO2
МО3	Mode of action of enzyme - Definition and significance of energy of activation - Lock and key theory and induced fit theory - Regulation of enzyme activity - definition types and examples. Mechanism of action of chymotrypsin, carboxypeptidase, ribonuclease, lysoenzyme.	13	CO3,
MO4	Enzyme inhibition – Definition, examples, determination of K _m and V _{max} in presence and absence of Competitive, non- competitive and uncompetitive inhibitiors (with kinetic derivations). Coenzymes in enzyme catalysis: Reactions involving NAD/NADP, FMN/FAD, Coenzyme A, biotin, lipoamide, TPP, pyridoxal phosphate, Tetra hydrofolate and cobamide.	15	CO4,
MO5	Immobilization of enzymes and their industrial applications – abzymes – ribozymes – Medical application of enzymes - use of glucose oxidase inenzyme electrodes. Application of enzymes in food industry.	13	CO5,

RECOMMENDED BOOKS:

- 1. David.L.Nelson, M. M. (7th ed 2017). *Lehninger principles of Biochemistry*. Freeman. W.H. and Company ISBN 10: 1464126119 / ISBN 13: 9781464126116
- 2. Trevor Palmer, P. B. (2007). *Enzymes Wood head Publishing* (7th ed.). Wood head Publishing ISBN : 9780857099921, 0857099922
- 3. Meenakshi Meena, D. C. (2009). Fundamentals of Enzymology. Aavinshankar Publisher ISBN-10: 8179102807 / ISBN-13: 978-8179102800

- **1.** Donald Voet, C. W. (2012). *Principles of Biochemistry*(4th ed). Wiley ISBN 10: 1118092449 / ISBN 13: 9781118092446
- 2. Sathyanarayana. (2017). Biochemistry. Elsevier ISBN: 9788131236017
- 3. Rodwell, V. (2018). Harper's Illustrated Biochemistry. McGrew. Hill.

M.SC., BIOCHEMISTRY FIRST SEMESTER

Course Title: MEMBRANE BIOCHEMISTRY (Elective Paper - I)

		Credits : 03	
L:T:P:S	: 4:0:0:0	CIA : 40	
		Marks	
Exam	: 03	ESE : 60	
Hours		Marks	

Course Outcomes: At the end of the Course, the Student will be able to:

Understand the various concepts and knowledge in Membrane Biochemistry. Students are expected to have the following learning outcomes

CO NUMBER	CO Statement
CO1	Describe the structure and function of membranes, and illustrate the structure of phospholipid and membrane bilayer. Apply knowledge of liposomes in drug delivery and justify how Cell to Cell Communication occurs.
CO2	Classify the presence of different in RBC membrane. Describe the consequence of damage occurs in RBC membrane and be able to understand the diseases caused due to its mutations.
CO3	Explain the importance of mitochondria, nucleus, Lysosome and endoplasmic reticulum membrane. Describe bacterial cell wall synthesis and inhibitors.
CO4	Distinguish between passive and active transport; explain how substances are directly transported across a membrane. Understand the mechanism of gastric HCl secretion.
CO5	Classify the types of receptors – neuro and hormonal transmitter, photoreceptor LDL and hormonal receptors and its clinical significance. Identify the main components of G protein signal transduction pathway.

Mapping of Course Outcomes to Program specific Outcomes:

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	2	2
CO2	3	3	3	1	3
CO3	3	3	1	1	2
CO4	3	3	`1	1	2
CO5	3	3	1	1	1

CORRELATION: 3-STRONG 2-MEDIUM 1-LOW

S.No.	Content of Module	Hrs	Cos
M01	Biological Membranes – Structure and functions of plasma membrane, Chemical composition and properties of biomembranes - Model lipid membranes - preparation and properties. Detergents, micelles, Liposomes, - Cytological, chemical and physical methods to study membrane structure, Lipid raft and Calveolae. Different models of cell membrane a historical - perspective. Cell-cell communication-Gap junctions, desmosomes and tight junctions.	17	CO1
M02	Red cell membrane — Isolation, major proteins in RBC membrane (Spectrin, Ankyrin, Band 4.1, Anion exchange proteins, Glycophorin) - Diseases caused due to mutations affect membrane proteins - Hereditary spherocytosis, Paroxysmal nocturnal hemoglobinuria. Plant cell wall structure, composition and biosynthesis.	12	CO2
M03	Membranes surrounding mitochondria, Endoplasmic reticulum. Membrane surrounding nucleus and lysosomes. Bacterial cell wall- structure, composition and biosynthesis. Inhibitors of cell wall synthesis.	15	CO3
M04	Transport across biomembranes - Simple diffusion and Fick's law, facilitated diffusion - Kinetics of facilitated transport - Symport, antiport and Uniport. Active transport protein Pumps - Na + K+ - ATPase and metabolic significance - Gastric HCL secretion.	15	CO4
M05	Receptors-Definition and Types. Neurotransmitter and its types- structure and functions of adrenergic and cholinergic receptors, glucose receptors, Action potential generation. Photoreceptors and vision - Receptor desensitization, Receptor mediated endocytosis, LDL receptors - biological and clinical significance. Familial hypercholesterolemia. Hormonal receptors- G Proteins and adenylate cyclase. Cystic fibrosis, Wilson disease,	16	CO5

RECOMMENDED BOOKS:

- 1. Jeremy M. Berg, L. e. (2019). *Biochemistry*(9th ed). WH Freeman ISBN-10: 812243049X, ISBN-13: 978-8122430493
- 2. Donald Voet, C. W. (2010). *Principles of Biochemistry* (4th ed.). Wiley ISBN 10: 1118092449 / ISBN 13: 9781118092446
- 3. David.L.Nelson, M. M. (9th ed 2012). *Lehninger principles of Biochemistry*. Freeman. W.H. and Company ISBN 10: 1464126119 / ISBN 13: 9781464126116

- **1.** Karp, G. (2013). *Cell and Molecular Biology.* John Wiley and Sons Inc ISBN-10 : 111830179X, ISBN-13 : 978-1118301791
- 2. Geoffery M. Cooper, R. E. (2013). *The Cell A Molecular Approach.* Sinauer Associations ISBN 10: 0878939644 / ISBN 13: 9780878939640
- 3. ShlomoMelmed, K. S. (2015). *William Textbook of Endocrinology* (13th ed.). Elsevier- ISBN 10: 0323297382 / ISBN 13: 9780323297387

M.SC., BIOCHEMISTRY FIRST SEMESTER

Course title: PHYTOMEDICINE (Elective Paper I)

		Credits : 03
L:T:P:S	: 4:0:0:0	CIA Marks : 40
Exam Hours	: 03	ESE Marks : 60

Course Outcomes: At the end of the Course, the Student will be able to:

CO1	Gain a wide knowledge on plants and the phytochemicals present in plants			
CO2	Perform the qualitative, GC analysis and HPLC analysis of various phytoconstituents			
CO3	Understand Indian systems of medicine			
CO4	Acquire knowledge on the biomedical importance of medicinal plants.			
CO5	Categorize the herbal medicines for treating human ailments.			

Mapping of Course Outcomes to Program specific Outcomes:

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	2	2	2	2	2
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	2	2	2	2	1

Correlation: 3 strong 2 medium 1 low

S.No.	Content of Module	Hrs	Cos
MO1	Plant- Anatomy. Function of various parts of plants Phytochemicals-Definition. Types of phytochemicals – Flavonoids (Flavones, isoflavones and flavonone), alkaloids, tannins, terpenoids and anthocynanins, phytosterols-their biological functions. Role of phytochemicals in ameliorating various ailments. Phytochemicals from various sources and their biological properties- Morin, Myricetin, Quercitin, isoquercitin, Capsaicin, Bicalein, Tangeritin, Curcumin, Fisetin, and Thymoquinone	15	CO1
MO2	Phytochemical analysis- Test for flavonoids, alkaloids, saponins, phytosterols, anthroquinones. Estimation of total phenols and flavonoids in plants. GC MS and HPLC analysis of phytocompounds.	15	CO2
моз	PHARMACOGNOSY Definition and history, Indian systems of medicine - Siddha, ayurvedha, and Unani systems. Medicinal plants, their chemical constituents. Secondary metabolites and their human benefits Drugs - Classification of Crude drugs -Future of pharmacognosy.	15	CO3
MO4	BIOMEDICAL IMPORTANCE OF MEDICINAL PLANTS Leaves - Adathoda, Eucalyptus - Flower - Clove fruits seeds - Nux vomica Gooseberry - unorganized drugs - Gum - Acacia - Resin - Turpentine, fixed oil - castor oil.	15	CO4
MO5	HERBAL MEDICINES FOR TREATING HUMAN AILMENTS Medicinal plants for diabetes. Drugs Acting on Cardiac Diseases, Cerebral Diseases, Nasal diseases - Blood pressure Drugs acting on Nervous system – Depressants, Stimulants. Respiration and Drugs - Urogenital system and drugs - Psychoactive plants.	15	CO5

RECOMMENDED BOOKS

- 1. Verma. (2015). *Plant Physiology*. Athena Academic ISBN: 9781910390016, 1910390011
- **2.** Lincoln Taiz, A. M. (2018). *Fundamentals of Plant Physiology*. Oxford University Press ISBN 10: 1605357901 ISBN 13: 9781605357904
- 3. W. C. (2009). Trease and Evans Pharmacognosy (16th ed.). Elsevier ISBN 10: 0702029343 / ISBN 13: 9780702029349
- 4. Williamson, M. H.-G. (2018). Fundamentals of Pharmacognosy and Phytotherapy. Elsevier.

- 1. Ajay Kumar Meena, P. B. (2009). *Plants-herbal wealth as a potential source of ayurvedic drugs.* Asian Journal of Traditional Medicines.
- 2. Saroya, A. S. (2017). Contemporary Phytomedicines. CRC Press - ISBN 9781315367071
- 3. Thangaraj, P. (2020). *Phytomedicine Research and Development*. CRC Press ISBN 10: 0367857596 / ISBN 13: 97803678575

M.SC., BIOCHEMISTRY FIRST SEMESTER

Course Title: STEM CELL BIOLOGY (Elective Paper I)

		Credits : 03
L:T:P:S	: 4:0:0:0	CIA Marks : 40
Exam Hours	: 03	ESE Marks : 60

At the end of the course the students will be able to

CO	CO Statement
NUMBER	
CO1	Discuss the types, properties, sources and characteristic features of stem cell.
CO2	Apply the hematopoietic and mesenchymal stemcells in medical field.
CO3	Identify the techniques used for isolation, expansion and characterization of
	stem cells.
CO4	Analyze the therapeutic applications of stem cell
CO5	Distinguish between stem cells and cancer stem cells. Identify the stem cells
	and cancer stem cells. Describe the importance of Stem cell banking and
	recent advancements in Stemcell Biology

Mapping of Course Outcomes to Program specific Outcomes:

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	2	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3

Correlation: 3 strong 2 medium 1 low

.No.	Content of Module	Hrs	Cos
MO1	Stem cells -Introduction, Definition and basics of stem cells. Classification of stem cells .Human embryonic stem cells, Adult stem cells. Sources of stem cells - Fetus and various adult tissues – Advantages of stem cell Blastocyst culture- Various stages of embryonic development. In vitro fertilization. Properties of stem cells - self renewal, clonality and plasticity. Pluripotent nature of stem cells - Extrinsic and Intrinsic factors. Characterization of human embryonic stem cells – Expression of cell surface marker, Karyotyping	15	CO1
MO2	Hematopoietic stem cells (HSC) - Basics, Development and Regulation of HSC. Clinical Application of HSC – Gene Therapy – using haematopoietic stem cells HSC for Leukemia. Mesenchymal stem cells (MSC) - Differentiation and Identification. Characteristics of mesenchymal stem cells. Clinical applications of stem cells.	15	CO2
МОЗ	Neuronal stem cell, mesenchymal stem cell, cardiac stem cells , planaria stem cells, prostate and breast stem cells, transforming growth factor (TGF β), G PROTEIN – COUPLED RECEPTORS (GPCRs).hematopoietic stem cells, stem cells and diabetes, techniques used for stem cell isolation, enumeration and Ex-VIVO expansion, techniques used for stem cell characterization.	20	CO3
MO4	Therapeutic applications of stem cell: fundamentals of regenerative medicine, autologous and allogenic stem cell transplatation, HLA typing, Animal models of regeneration.	15	CO4
MO5	Skeletal Muscle Stem Cells – Development and functions. Liver stem cells – Organization and functions. Tumor stem cells – Basics differences and Similarities of cancer stem cells and stem cells. Cancer stem cell signaling – NOTCH pathway. Canonical wnt signaling pathways in hematopoietic stem cells. Stem cell therapies in animal models. Use and benefits of stem cell for human beings. Stem cell banking – cryopreservation techniques, national guideline by ICMR, recent advances in stem cell biology.	10	CO5

RECOMMENDED BOOKS

- 1. Robert lanza, J. G. (2009). Essential of stem cell biology. Academic press ISBN: 9780080884974
- **2.** Peter J, Q. (1998). *Stem cell biology and gene therapy* (1st ed.). Willyless.
- **3.** A. D. Ho. R. Hoffiman. (2006). *Stem cell transplantation biology processes therapy.* wiley-VCH.ISBN 10: 3527310185 / ISBN 13: 9783527310180

- 1. Potten, C. (2006). Stem cells. Elsevier.
- 2. Neil Singh, L. V.-J. (2011). *A Practical guide to human stem cell biology.* Wiley ISBN 10: <u>0470595450</u> / ISBN 13: <u>9780470595459</u>
- 3. Knoepfler, P. (2013). Stem Cells: An Insiders Guide. World Scientific Publishing Company.

PRACTICAL-I - BIOMOLECULES AND INTERMEDIARY METABOLISM

Course Code	:	Credits	: 02
L:T:P:S	: 0:0:3:0	CIA Marks	: 50
Exam Hours	: 05	ESE Marks	: 50

COURSE OUTCOMES

At the end of the Course, the Student will be able to:

CO Number	CO Statement		
CO1	Become proficient in colorimetric determination of pyruvate, lactate and tryptophan		
CO2	Determine the concentration of carbohydrate and protein in unknown solution		
CO3	Analyse the extraction method for lipid and starch		
CO4	Learn the isolation and estimation of DNA and Glycogen from biological sources		
CO5	Demonstate the iodine number and saponification number of edible oil		

Mapping of Course Outcomes to Program Specific Outcomes:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	1	2	3	3	2	1	1
CO2	1	1	3	3	1	1	1
CO3	1	2	3	3	1	1	1
CO4	1	1	3	3	1	1	1
CO5	1	1	3	3	1	1	1

3-Strong Correlation 2- Medium Correlation 1- Low Correlation

1	Fatimation of Dummata	CO1 COE
1	Estimation of Pyruvate	CO1-CO5
2	Estimation of Lactate	
3	Estimation of Tryptophan	
4	Estimation of Carbohydrates by Anthrone method	
5	Estimation of Protein by Lowry's method	
6	Extraction of Lipids	
7	Extraction and estimation of starch	
8	Isolation and estimation of Glycogen	
9	Isolation of DNA	
Demonst	cration experiments	
10	Demonstrate of Iodine Number	
11	Determination of Saponification Number	

TEXT BOOKS/ REFERENCE BOOKS:

Sl.No	Authors	Title	Publishers	Year of
				Publication
1	J. Jayaraman	Laboratory Manual	New Age International (Fifth edition 2015
		in Biochemistry	P) Limited	
2	S. Sadasivam A. Manickam	Biochemical	New age International	third edition 2018
		Methods	Pvt Ltd publishers	
3	S. K. Sawhney and Randhir	Introductory	Narosa publishing house	Reprint, 2014
	Singh	Practical		
		Biochemistry		
4	Dr. G. Sattanathan, , Dr. S.S.	Practical Manual of	Skyfox Publishing Group	First Edition :
	Padmapriya,	Biochemistry	Skyfox Press #987,	December 2020
	Dr.B.Balamuralikrishnan,		Medical College Road	
			Thanjavur-613004 Tamil	
			Nadu, India.	

I MSC BIOCHEMISTRY I SEMESTER

PRACTICAL-II -ENZYMES AND PLANT BIOCHEMISTRY

Course Code	:	Credits	: 02
L:T:P:S	: 0:0:3:0	CIA Marks	: 50
Exam Hours	: 05	ESE Marks	: 50

Course outcomes: At the end of the course, the student will be able to:

СО	CO Statement
Number	
CO 1	Correlate the activity of enzymes with change in pH, Temperature and substrate
	concentration
CO 2	Determine enzyme activity and specific activity and understand the difference
	between the them
CO 3	Identify the secondary metabolites in plants
CO 4	Separate plant pigments using column chromatography
CO 5	Assess the presence of enzymatic antioxidants in plant extracts

Mapping Course Outcomes with Program Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	2	2	3
CO3	3	2	2	3	2
CO4	3	2	2	3	2
CO5	3	2	3	2	2

1	Determination of optimum pH of Salivary amylase	CO1-CO5
2	Determination of optimum temperature of Acid phosphatase	
3	Effect of substrate concentration on the activity of alkaline	
	phosphatase	
4	Determination of enzyme activity of total ATPase.	
5	Determination of specific activity of lactate dehydrogenase.	
6	Qualitative analysis of Secondary metabolites a)Terpene b)	
	Flavonoid c) Phenol d) Tannin e) Saponin F) Steroids	
7	Estimation of Total Phenol from plants	
8	Estimation of Total Flavonoid from plants	
9	Determination of Non enzymatic of antioxidants (vitamin	
	E/C)	
Demonst	ration experiments	
10	Separation of Plant pigments Chlorophyll and Carotene by	
	column chromatography.	
11	Determination of Enzymatic antioxidants (GPx, SOD &	
	catalase) Any one	

RECOMMENDED BOOKS

- 1. WORK, T. W. (2009). *Laboratory techniques in Biochemistry & Molecular Biology by Amsterdam.* North Holland Pub. Co -
- 2. Walker, K. W. (2010). *Principles and techniques of Practical Biochemistry* (7th ed.). Cambridge University Press ISBN-10 : 1108716989 / ISBN-13 : 978-1108716987
- 3. Singh, S. a. (2014). *Introductory Practical Biochemistry* (reprint ed.). Narosa publishing house ISBN 10: 9386217627 / ISBN 13: 9789386217622

- 1. Manickam, S. S. (2016). *Biochemical Methods*. New age International Pvt Ltd publishers ISBN 10: 8122421407 / ISBN 13: 9788122421408
- 2. Jayaraman, J. (2011). *Laboratory Manual in Biochemistry*. New Age International Pvt Ltd Publishers ISBN-10: 812243049X, ISBN-13: 978-8122430493
- 3. Ashwood, B. a. (2001). *Tietz Fundamentals of Clinical chemistry*. WB Saunders Company, Oxford Science Publications USA ISBN 10: 0721686346 / ISBN 13: 9780721686349

M.SC., BIOCHEMISTRY SECOND SEMESTER

Course Title: ANALYTICAL BIOCHEMISTRY (CORE PAPER V)

		Credits : 04	
L:T:P:S	: 3:1:0:0	CIA : 40	
		Marks	
Exam	: 03	ESE : 60	
Hours		Marks	

Course Outcomes: At the end of the Course, the Student will be able to:

CO NUMBER	CO STATEMENT
CO1	Analyze and apply the methodology involved in organ and tissue slice, homogenization techniques. Perform cell sorting and cell counting
CO2	The students will know the structure of atoms and molecules. The larger th number of wavelength emitted by these system makes it possible to investigate their structure in detail including electronic configuration of ground and various excited state and also biochemical assay of macromolecules Advanced knowledge on the interactions of electromagnetic radiation and matter and their applications in spectroscopy Analyze and interpret spectroscopic data collected by the methods Assay of biomolecules (Carbohydrates, Cholesterol, Protein, Enzymes) using UV spectroscopy Estimate the amount of vitamins using spectrofluorimetry Interpret the molecular weight of compounds using mass spectra
CO3	To learn various techniques of product purification and design purification strategy based on product characterized and cost effectiveness Obtaining analytical skills to separate samples (amino acids) using paper chromatography Detection of sugars using thin layer chromatography Separation and purification of proteins using affinity chromatography Apply skills in separating various components of plant extract using HPLC
CO4	Demonstrate the methodology involved in separation of proteins based on molecular weight by SDS PAGE Separation of DNA by agarose gel electrophoresis by various electrophoretic techniques.
CO5	A practical knowledge on the separation of biological sample by centrifugation Separation of subcellular organelles by differential centrifugation

Mapping of Course Outcomes to Program specific Outcomes:

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	2	1
CO2	3	3	3	3	1
CO3	3	3	3	3	1
CO4	3	3	3	2	1
CO5	3	3	3	2	1

CORRELATION: 3-STRONG 2- MEDIUM 3- LOW

S.No.	Content of Module	Hrs	Cos
MO1	General approaches to biochemical investigation. Organ and tissue slice technique, and homogenization techniques, cell sorting and cell counting. Electrochemical techniques – principles of redox reactions, pH electrode. Clark's oxygen electrode and their applications. Method of investigating metabolism-principle- isotopic tracers.	15	CO1
MO2	Principle of Spectroscopy: spectra - definition, types-absorption & emission-wavelength, wave number, frequency. Principle, procedure and application of NMR and mass spectroscopy. Principle, procedure and application of UV-VIS and ESR spectrophotometry, spectrofluorimetry and X ray diffraction.	15	CO2
МОЗ	Chromatography: definitions, types-adsorption &partition. Principles, procedure and application-paper chromatography- TLC. column chromatography- ion – exchange chromatography, gel filtration and affinity chromatography. Hydroxy apatite chromatography and hydrophobic interaction chromatography (HIC)-GLC and HPLC.	15	CO3
MO4	Electrophoresis: General Properties of electrophoresis, support media, factors affecting electrophoresis, high voltage and low voltage electrophoresis, SDS – PAGE, iso electric focusing, isotachophoresis, 2D PAGE and capillary electrophoresis. Cellulose acetate and continuous flow electrophoresis, pulse field gel electrophoresis, Agarose gel electrophoresis	15	CO4
MO5	Centrifugation- basic principles and laws of sedimentation. Preparative and analytical ultracentrifuges. Sedimentation equilibrium methods. Differential and density gradient centrifugation. Radioisotopes-definition and examples, half life. Detection-GM counter, and scintillation counter -autoradiography. units of radioactivity. Hazards and safety aspects in handling radioisotopes	15	CO5

RECOMMENDED BOOKS

- 1. Anand, C. (2014). *Instrumental methods of Analysis.* Himalaya Publishing house ISBN: 978-93-5142-088-0
- 2. Wilson/Walker. (2018). *Wilson and Walker's Principles and Techniques of Biochemistry and Molecular Biology.* Cambridge University Press ISBN: 9781316677056
- 3. Dr. AvinashUpadhyay, D. K. (2016). *Biophysical Chemistry*. Himalaya Publishing house ISBN-10: 8184888074 / ISBN-13: 978-8184888072

- 1. Dua, S. (2010). Biochemical Methods of Analysis: Theory and Applications. Narosa ISBN-10: 1842655906 / ISBN-13: 978-1842655900
- 2. Bernard J.White, J. F. (2015). Biochemical Techniques Theory And Practice. CBS Publishers & Distributors.
- 3. Basha, M. (2020). Analytical Techniques in Biochemistry. Humana Press ISBN: 978-1-0716-0134-1

M.SC., BIOCHEMISTRY SECOND SEMESTER

Course Title: HUMAN PHYSIOLOGY AND NUTRITION (CORE PAPER VI)

		Credits : 04
L:T:P:S	: 3:1:0:0	CIA Marks : 40
Exam	: 03	ESE Marks : 60
Hours		

Course Outcomes: At the end of the Course, the Student will be able to:

CO NUMBER	CO Statement
CO1	Gaining a complete knowledge in the physiology of life.
	Classify blood groups so as to identify the blood groups of patients and donors for
	the purpose of safe blood transfusion. Exposure to the nature and types of blood
	cells, blood groups, lymphatic system
CO2	Acquire knowledge on morphology of lungs, types of respiration, mechanism of
	gaseous exchange, role of heamoglobin, chloride shift and bohr effect.
CO3	gain knowledge on morphology and functions of kidney, structure of nephron, mechanism of mechanism of urine formation, Structure and functions of neuron, neuro transmitters, Mechanism of nerve impulse transmission
CO4	Realizing the fact that "Food as medicine" Cognizance of basic food groups viz. Carbohydrates, proteins and lipids and their nutritional aspects as well as calorific Value
CO5	A wide exposure to the classification and biological significance vitamins and minerals present in food

Mapping of Course Outcomes to Program specific Outcomes:

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	1	2
CO2	3	3	1	2	1
CO3	3	3	3	1	2
CO4	3	3	3	1	1
CO5	3	3	3	2	3

CORRELATION: 3-STRONG 2-MEDIUM 3-LOW

S.No.	Content of Module	Hrs	Cos
MO1	UNIT – I Blood: Composition and function, Red blood cells, Hemoglobin, white blood cells and platelets. Hematopoiesis- Blood coagulation, blood groups and blood transfusion. Formation and functions of lymph. Circulatory System- heart-position, structure, properties of cardiac muscle. overview of systemic and pulmonary circulation, conducting system of the heart, heart rate, cardiac cycle, cardiac output.	17	CO1
MO2	UNIT – II a) Respiratory system: components of Respiratory system, Mechanism of respiration. Bohr effect – gas exchange and partial oxygen pressure, chloride shift. b) Digestive system: Secretion of digestive juices, digestion and absorption of carbohydrates, proteins and fats.	13	CO2
МОЗ	UNIT – III Excretory System: Components of Excretory system, structure of kidney. Mechanism of formation of urine, composition of urine Nervous system: Structure of neuron, resting potential and action potential, neuro transmitters-definitions, types – cholinergic and adrenergic with examples. Role of GABA -Mechanism of nerve impulse transmission.	15	CO3,CO5
MO4	UNIT IV Definition of Nutrition; Basic food groups. Nutritional Aspects of carbohydrates- Dietary sources, RDA, Physiological role; significance of fibre in the diet; Nutritional Aspects of proteins - Dietary sources, RDA, Physiological role; significance of essential amino acids, Protein energy malnutrition in children; Nutritional Aspects of lipids - Dietary sources, RDA, Physiological role; significance of essential fatty acids, MUFAs, and PUFAs.	13	CO4, CO5
MO5	UNIT V Vitamins - major classification, Dietary sources, RDA, deficiency symptoms and physiological functions of Vitamin A, D, Vitamin C, B1, B2 and folic acid. Dietary sources, RDA, deficiency symptoms and Physiological functions of dietary Calcium, phosphorus, magnesium, iron, iodine, zinc fortification – enrichment with examples.	17	CO5,

RECOMMENDED BOOKS:

- 1. Derrickson, G. J. (2017). *Principles of Anatomy and Physiology.* John Wiley and Sons ISBN: 978-1-119-40006-6
- 2. Hall, G. A. (2019). Text book of MEdical physiology. Elsevier india ISBN-10: 8131257738
- 3. Sembulingam, K. S. (2019). *Essentials Of Medical Physiology.* Jaypee Brothers Medical Publishers ISBN 10: 9352706927 ISBN 13: 9789352706921
- 4. Sharma, D. S. (2017). *Nutritional Biochemistry*. CBS Publishers and distributors ISBN 10: 8123925271 / ISBN 13: 9788123925271
- 5. B.Srilakshmi, B. (2017). *Food Science* (Multi Colour Edition ed.). New Age International Publishers ISBN 10: 8122438091 / ISBN 13: 9788122438093

- 1. D. Venkatesh, H. H. (2018). *Textbook of Medical Physiology.* Wolters Kluwer India Pvt. Ltd ISBN-10: 9387963535 / ISBN-13: 978-9387963535
- 2. D. Venkatesh, H. H. (2018). *Basics of Medical Physiology* (4th ed.). Wolters Kluwer India Pvt. Ltd.; ISBN-10: 9387963535 / ISBN-13: 978-9387963535
- 3. H. S. Ravi Kumar Patil, H. K. (2009). A Textbook of Human Physiology. I K International Publishing House Pvt. Ltd ISBN: 9789380026503.
- 4. Srilakshmi, B. (2019). *Dietetics* (Multi Colour Edition ed.). New Age International Publishers ISBN 10: 9386649209 / ISBN 13: 9789386649201

M.SC., BIOCHEMISTRY SECOND SEMESTER

Course Title: MOLECULAR BIOLOGY (CORE PAPER VII)

		Credi : 04 ts
L:T:P:S	: 3:0:1:0	CIA Marks : 40
Exam	: 03	ESE : 60
Hours		Marks

Course Outcomes: At the end of the Course, the Student will be able to:

CO NUMBER	CO Statement
CO1	Infer the central dogma of molecular biology and show that DNA is the genetic material through experimental evidence Compare and contrast the replication process in prokaryotes and eukaryotes and explain the events, enzymology, fidelity, inhibitors and regulation
CO2	Categorize DNA repair mechanisms, define mutation and list its types
CO3	Summarize the process of prokaryotic and eukaryotic transcription
CO4	Define genetic code, list its characteristics, relate genetic code to translation process and explain protein biosynthesis
CO5	Interpret the regulation of gene expression in prokaryotes using <i>lac</i> and <i>trp</i>
	Operon

Mapping of Course Outcomes to Program specific Outcomes:

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	1	1	3
CO3	3	3	1	2	3
CO4	3	3	1	1	2
CO5	3	3	2	1	3

CORRELATION: 3-STRONG 2-MEDIUM 3-LOW

S.No.	Content of Module	Hrs	Cos
MO1	REPLICATION—DNA as genetic material (Meselson & Stahl experiments), enzymology of replication in prokaryotes, replication in E.coli, Øx174 model, mitochondrial replication. Replication in eukaryotes. Regulation of replication in prokaryote and eukaryote.	20	CO1
MO2	DNA REPAIR AND MUTATION- Direct repair, Mismatch repair, base excision,nucleotide excision repair, recombinant repair -SOS repair, Mutation-mutants, mutagen, Types-Spontaneous, induced, frameshift, site directed mutagenesis.	15	CO2
МОЗ	TRANSCRIPTION- Role of RNA polymerase, promoter site, consensus sequence, transcriptional factors –mechanism of prokaryotic and eukaryotic transcription, post transcriptional modifications and processing of mRNA-5'capping, 3'polyadenylation, splicing mechanism ,t RNA, rRNA. Inhibitors of transcription.	15	CO3
MO4	TRANSLATION- characteristics of genetic code, wobble hypothesis, monocistronic mRNA and polycistronic mRNA.Mechanism of protein synthesis in prokaryotes and eukaryotes, Shine Dalgarno sequence, inhibitors of protein synthesis. Post translational modifications, protein folding-chaperons and heat shock proteins	15	CO4
MO5	Regulation of gene expression- gene expression regulation in prokaryotes-operon concept- positive and negative regulation of la operon – role of cAMP and glucose - trp operon - attenuation	10	CO5

- 1. Watson, J. D. (2017). *Molecular Biology of the Gene*. Pearson ISBN-10: 9332585474 / ISBN-13: 978-9332585478
- 2. V.Malathi. (2012). Essentials of Molecular Biology (1st ed.). Pearson Education ISBN-10: 8131773213 / ISBN-13: 978-8131773215
- 3. David.L.Nelson, M. M. (7th ed 2017). *Lehninger principles of Biochemistry*. Freeman. W.H. and Company ISBN 10: 1464126119 / ISBN 13: 9781464126116

- 1. DonalVoet, j. G. (2016). Fundamentals of Biochemistry: Life at molecular level (5th ed.). john Wiley & sons- ISBN: 978-1-118-91840-1
- 2. Albert, B. (2014). *Molecular Biology of the cell*. W.W. Norton and company ISBN 10: 0815344643 / ISBN 13: 9780815344643
- 3. Rastogi, V. B. (2016). *Principles of Molecular biology* (2nd ed.). Medtech ISBN-10: 9789384007478 / ISBN-13: 978-9384007478

M.SC., BIOCHEMISTRY SECOND SEMESTER

Course Title: BIOTECHNOLOGY (Elective Paper - II)

		Credits : 03	
L:T:P:S	: 3:0:0:1	CIA : 40	
		Marks	
Exam	: 03	ESE : 60	
Hours		Marks	

Course Outcomes: At the end of the Course, the Student will be able to:

CO1	Demonstrate the basic and recent techniques applied in the field of Biotechnology					
CO2	Describe gene therapy and gain knowledge related to production of pharmaceutically important products					
CO3	Apply the basic rDNA technique to produce transgenic animal, discuss gene transfer methods, their application in pharmaceutical industry, cloning and its importance					
CO4	Interpret the principles and technical advances behind the in vitro culture of plant cells and Design plant related rDNA techniques					
CO5	Discuss the basic requirements and tools employed in genetic engineering process.					

Mapping of Course Outcomes to Program specific Outcomes:

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	2	2	1	1	2
CO2	2	2	1	1	2
CO3	2	2	2	2	2
CO4	2	2	2	2	2
CO5	3	3	3	2	1

CORRELATION: 3-STRONG 2-MEDIUM 3-LOW

S.No.	Content of Module	Hrs	Cos
MO1	Biotechnology Definition –scope –importance. Basic techniques: agarose gel electrophoresis –isolation, purification and sequencing of DNA –hybridization methods –southern, northern and western blotting amplification of DNA – PCR quantitative and qualitative.	9	CO1
MO2	Medical Pharmaceutical Biotechnology: Gene therapy -Sickle cell anemia, cystic fibrosis. DNA in disease –pharmaceutical products of DNA technology, recombinant vaccines – Monoclonal antibodies (hybridoma technology)	9	CO2
МО3	Animal biotechnology: Animal cell culture, tissue culture – gene transfer methods in animals – transfection, microinjection, electroporation, gene gun, use of polycation, transgenic mice – knock out and knock in technology. Embryo transfer and <i>invitro</i> fertilization – applications.	9	CO3
MO4	Plant biotechnology: Plant tissue culture –role of Auxins, Cytokinins, Giberellic acid. Somaclonal variations – microprojectiles, transgenic plant technology –for pest resistance, herbicide tolerance, delay of fruit ripening and use of plants t produce commercially important proteins –growth promoting bacteria in plants –antisense RNA technology. gene transfer.	9	CO4
MO5	Genetic Engineering: Basic principles –mechanism of natural gene transfer by Agrobacterium, integration of foreign DNA molecules, restriction enzymes, their types and target sites, cutting and joining DNA molecules, linkers, adapters, homopolymers, enzymes used in genetic engineering, cloning vectors and their properties, natural plasmids, invitro vectors, cosmids and T-DNA based hybrid vectors.	9	CO5

- 1. U.Sathyanarayana. (n.d.). *Biotechnology* ISBN-10: 8187134909 / ISBN-13: 978-8187134909
- 2. T.A, B. (2016). *Gene cloning and DNA analysis*. Wiley Blackwell ISBN 10: 1119072573 / ISBN 13: 9781119072577
- 3. primrose, T. a. *principles of gene manipulation ISBN-10 : 1405135441 / ISBN-13 : 978-1405135443*

- 1. Dubey, R. (2014). A Textbook of Biotechnology . S. Chand ISBN 10: 8121926084 / ISBN 13: 9788121926089
- 2. Loroch, R. R. (2016). Biotechnology for Beginners. Academic Press ISBN: 9780128012246
- 3. H.K.Das. (2010). *Textbook of Biotechnology.* Willey- ISBN: 9788126564040

M.SC., BIOCHEMISTRY SECOND SEMESTER

Course Title: ECOLOGY AND POPULATION EDUCATION (Elective Paper II)

		Credits	: 03
L:T:P:S	: 3:0:0:1	CIA	: 50
		Marks	
Exam	: 03	ESE	: 60
Hours		Marks	

Course Outcomes: At the end of the Course, the Student will be able to:

CO1	Discuss the concepts of ecology and the significant role of species in the environment
CO2	Discuss the negative impact of Humans behavior on environment. Identify and classify the Biogeographical zones of India
CO3	Present their views about biodiversity and justify their roles in conservation of biodiversity.
CO4	Explore the needs of Population Education and the impact of population growth in the society
CO5	Calculate the population rate and Identify and classify populated regions.

Mapping of Course Outcomes to Program specific Outcomes:

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	1	3	3
CO2	3	3	1	3	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
CO5	2	2	1	2	2

Correlations: 3 Strong 2 Medium 1 Low

S.No	Content of Module	Hrs	Cos
MO1	Introduction to Ecology & environmental sciences; Flow of energy and cycling of materials; water, carbon, nitrogen and phosphorus. Trophic pyramids and food webs	9	CO1
MO2	Alterations of ecosystem function: acid rain, nuclear winter, global warming and ozone hole. Major terrestrial biomes; theory of island biogeography; biogeographical zones of India.	9	CO2
моз	Principles of conservation-Values of biodiversity; threats to biodiversity major approaches to management, Indian case studies on conservation/management strategy (Project Tiger, Biosphere reserves).	9	CO3
MO4	Population Education Definition, attributes /features of population education, significance, objective and scope of population education. Impact of population growth on the Basis Requirements of Life: Food, Clothing, Shelter, education and standard of living.	9	CO4
MO5	Density of population - Arthmetic density , Physiological density or Nutritional density, factors affecting population density- physical and non physical factors. Distribution of population- Regions of High density of population , Regions of moderate density of population , Regions of low density of population	9	CO5

- 1. C, G. K. (2018). *Principles of Conservation Biology.* Sinauer Associates Inc., Massachusetts ISBN 10: 0878935215 / ISBN 13: 9780878935215
- 2. (Ed.), G. B. (1992). *Biodiversity status of the Earth's Living Resources*. Chapman & Hall, London-ISBN 10: 0412472406 / ISBN 13: 9780412472404
- **3.** PD, Sharma. (2000). *Ecology and Environment*. Rastogi Publications, Meerut, India ISBN-10 : 8171339654, ISBN-13 : 978-8171339655

- 1. Singh MP, S. B. (2004). *Conservation of Biodiversity and Natural Resources*. Daya Publishing House, New Delhi ISBN 10: 8170359880 / ISBN 13: 9788170359883
- 2. Krohne, D. T. (2017). *Ecology: Evolution, Application, Integration* (2nd ed.). Oxford Univ Pr ISBN 10: 0190638885 ISBN 13: 9780190638887
- 3. Thomas Smith, R. S. (2015). *Elements of Ecology* (9th ed.). Pearson. ISBN 10: 1292077409 / ISBN 13: 9781292077406

M.SC., BIOCHEMISTRY SECOND SEMESTER

Course Title: MICROBIOLOGY (Elective Paper II)

		Credits : 03	
L:T:P:S	: 3:0:0:1	CIA : 50	
		Marks	
Exam	: 03	ESE : 50	
Hours		Marks	

Course Outcomes: At the end of the Course, the Student will be able to:

CO1	Describe basic structure of bacteria, fungi, algae and protozoa and their biologica importance to mankind.
CO2	Gain knowledge on DNA organization & transfer of genetic information.
CO3	Acquire knowledge on the normal microbial flora and types of infections.
CO4	Categorize the design of bioreactors, rationale in medium formulation and appreciate the different types of fermentation process.
CO5	Evaluate the present worth on waste management in water resources and to recycle the solid and liquid waste.
CO6	Acquire, invent and practice, the theories and principles of food microbiology in current worldwide issues. Apply their skills in formulating the fermented foods and in food processing technology

Mapping of Course Outcomes to Program Specific Outcomes:

	PS O1	PS O2	PS O3	PSO 4	PSO 5
CO1	2	3	2	1	1
CO2	2	1	1	1	1
CO3	3	2	1	1	1
CO4	1	3	2	1	1
CO5	2	3	1	1	1

CORRELATION: 3-STRONG 2- MEDIUM 3- LOW

S.No.	Content of Module	Hrs	Cos
MO1	Ultrastructure of bacteria, fungi, algae and protozoa. Structure and functions of the cellular components Cultivation of bacteria, nutritional requirements and nutritional types of bacteria. Physical factors affecting growth, Bacterial growth curve –continuous growth, (chemostat and turbidostat), synchronous culture and enumeration of bacteria.	9	CO1
MO2	DNA organization, extra chromosomal genetic elements – transfer of genetic information, conjugation, Hfr strains, transformation and transduction.	9	CO2
МОЗ	Medical Microbiology: Distribution, occurrence of normal microbial flora on skin, respiratory tract, genitourinary tract and GI tract. Infection – types, methods of transmission, factors affecting infection – epidemiological terminologies – epidemic, pandemic, endemic – infectious disease transmissions. Pathogenic micro organisms – <i>Salmonella, E.coli, Klebsiella, streptococcus</i> , and mycobacterium, HIV.	9	CO3
MO4	Industrial microbiology: Outline of fermentation process, fermentor-Design and types (Continuous stirred tank fermentor, Airlift fermentor) Producer organism-Development of Industrial strains, Fermentation/Production medium, Downstream Processing. Products of industrial microbiology – penicillin, ethanol, vinegar, citric acid, and protease. Bio remediation. Fermented foods - cheese, yoghurt, pickles, bread. Water Microbiology – microbes in waste treatment – Domestic and industrial. Bacteriological analysis of water.	9	CO4
MO5	Food microbiology- food spoilage, food preservation — methods with example- Food infections —clostridium, staphylococcus and salmonella, fungal intoxication — aspergillus and food toxicity. Microbiological examination of food- direct microscopic count and dye reduction method (MBRT) Food safety, Risks and hazards: Microbiological consideration in food safety, Effects of processing and storage on microbiological safety. Food laws and regulations- HACCP, FSSAI, BIS.	9	CO5

- 1. Pelzar, C. a. (2007). Textbook of Microbiology(5th ed). Tata Mcgraw Hill -
- 2. Parija. (2012). Textbook of Microbiology and Immunology, 2/e. ELSEVIER ISBN 10: 813124461X / ISBN 13: 9788131244616
- 3. Prescott. (2017). *Microbiology* (8th ed.). Mc Graw Hill, Boston ISBN-10: 1259281590 / ISBN-13: 978-1259281594

- 1. Panicker, A. R. (2017). *Textbook of Microbiology* (10th ed.). Orient Longmans ISBN 10: <u>1847558569</u> / ISBN 13: 9781847558565
- 2. W.C, F. (2014). Food Microbiology. Mc Graw Hill -
- 3. Baveja, C. (2019). Textbook of Microbiology. Arya Publications ISBN 10: 8182967058 / ISBN 13: 9788182967052

M.SC., BIOCHEMISTRY SECOND SEMESTER

Course Title: BIOETHICS, IPR AND HUMAN RIGHTS (Elective Paper - III)

Credit:03

L:T:P:S: 3:0:0:1

CIA : 40

Marks

Exam : 03 ESE Marks : 60

Hours

Course Outcomes: At the end of the Course, the Student will be able to:

CO NUMBER	CO Statement		
CO1	Outline International Instruments On Human Rights		
CO2	Compare The Powers And Functions Of SHRC AND NHRC and		
	Philosophies of Adamsmith and Thiruvalluvar.		
CO3	Interpret Women's Right in India.		
CO4	Analyze The Bioethics Of Cloning And Recombinant Drugs Production		
CO5	Apply IPR and IPP and Prioritize Biosafety Measures From Biohazards.		

Mapping of Course Outcomes to Program specific Outcomes:

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	1	1	1	1	1
CO2	1	1	3	1	1
CO3	1	1	3	3	1
CO4	1	1	3	3	1
CO5	1	1	3	3	1

CORRELATION: 3-STRONG 2- MEDIUM 3- LOW

S.No.	Content of Module	Hrs	Cos
MO1	Introduction to HR, definition fundamental rights- International Instruments- UDHR- United Nation commission for HR- ICCPR (International Covenant on civil and political rights)- Historical Development of HR.	9	CO1
MO2	Development of HR in India – Article 21 of Indian Constitution- Protection of Human Rights Act 1993- NHRC- SHRC (functions)- Economics of HR and Human Relations – Theory of moral sentiments by Adam Smith. Economic philosophy of Thiruvalluvar.	9	CO2
MO3	Students activity – Assignment/seminar- case study- definition, women rights, newspaper articles- right to livelihood, right of women, right to food, water, education, medical care and shelter.	9	CO3
MO4	Bioethics- Definition; Ethical concerns regarding trangenesis. Bioethical issues of reproductive and therapeutic cloning - Applications of cloning- Therapeutic cloning and FDA approved cloned food. Bioethics in animal genetic engineering – IAEC guidelines of animal experiments; bioethics in plant genetic engineering, ethics of using recombinant drug.	9	CO4
MO5	Genetically modified foods- contradiction — health hazards. Labeling-Regulations of field experiments and release of GMOs into the field, Biohazards, Biosafety measures.Intellectual Property Rights- Introductions — Patent Procedure in India.	9	CO5

TEXT BOOKS AND REFERENCE BOOKS

- 1. Benchamp, T. (1979). Contemporary issues in bioethics. Oxford university press -
- 2. Benchamp, T. (2020). *Principles of Animal Research Ethics.* Oxford university press ISBN 10: 0190939125 / ISBN 13: 9780190939120
- 3. DeGrazie, T. A. (2015). Biomedical Ethics. Amazon

- 1. Dubey, R. (2014). A Textbook of Biotechnology . S. Chand ISBN 10: 8121926084 / ISBN 13: 9788121926089
- 2. T.G.Agitha, N. &. (2009). *Principles of intellectual Property.* Eastern Book Company Lucknow ISBN 10: 8170121132 / ISBN 13: 9788170121138
- 3. Acharya, N. (2014). Text book of Intellectual property rights. Asia Law House

M.SC., BIOCHEMISTRY SECOND SEMESTER

Course Title: ORGANIZATIONAL BEHAVIOUR (Elective Paper III)

		Credits	: 03
L:T:P:S	: 3:0:0:1	CIA Marks	: 40
Exam	: 03	ESE Marks	: 60
Hours			

Course Outcomes: At the end of the Course, the Student will be able to:

CO 1	Understand the evolution of an organization and its important components. Understand and appreciate the organization variables such structure, culture, change and creativity
CO2	Analyse and effectively manage individual behavior in an organization
CO3	Analyse and effectively manage group behavior in an organization
CO4	Develop leadership styles to handle management stress in diverse organisations
CO5	Understand the nuances and critical contributions of trained personnel in the health care
	Organizations

Mapping of Course Outcomes to Program specific Outcomes:

	PS O1	PS O2	PS O3	PS O4	PS O5
CO1	3	3	1	3	3
CO2	3	3	1	3	3
CO3	3	3	2	2	3
CO4	3	3	2	2	3
CO5	3	3	1	3	3

Correlations: 3 Strong 2 Medium 1 Low

SI NO	CONTENTS OF MODULE	Hrs	Cos
1	Introduction toOrganizationalBehavior Historical Perspectives	6	CO1
2	Individual Dynamics-Individual Behavior & Personality, Perception & Learning, Motivation in the Workplace, Emotions & Attitudes in the Workplace, Emotional Intelligence		CO2
3	Interpersonal & Group Dynamics - Interpersonal Communication, Interpersonal Conflicts & Negotiations Foundations of Team Dynamics, Team Effectiveness, Developing High Performance Teams, Team Structure, Processes & Culture, Team Building	10	СОЗ
4	Organizational Dynamics Organizational Structure, Organizational Culture, Organizational Change, Creativity, Leadership Challenges in the Emerging Era, Leadership, Power & Influence in Organizations, Gender & Diversity inOrganizations, Managing Stress	9	CO4, CO5
5	Organizational behavior in health care Ensuring patient safety, ethical behavior among the medical practitioners, patient-centered care and strategies to improve healthcare delivery and patients' satisfaction, qualified personnel for home health rehabilitation with essentials in interpersonal and communication skills.(Case Studies to be included)	10	CO5

- 1. McShane, V. (2014). *Organizational Behavior* (7th ed.). McGraw-Hill Education ISBN 10: <u>0077862589</u> / ISBN 13: <u>9780077862589</u>
- 2. Stephen P. Robbins Timothy A. Judge, N. V. (2016). *Organizational Behavior*. Pearson ISBN 10: 0138000409 / ISBN 13: 9780138000400
- 3. Jack Maxwell Wood, R. M.-S. (2012). *Organisational Behaviour: Core Concepts and Applications*. Wiley ISBN: 978-0-730-30144-8

- 1. David Buchanan, A. H. (2016). *Organizational Behaviour* (9th ed.). Pearson ISBN 10: 1292092882 / ISBN 13: 9781292092881
- 2. UdaiPareek. (2004). *Organization Behaviour*. Oxford Publishing ISBN-10: 019807073X / ISBN-13: 978-0198070733
- 3. Robbins, S. (2004). *Organisation Behaviour* (10th ed.). Prentice Hall ISBN-13: 978-0131000698 / ISBN-10: 0131000691

M.SC., BIOCHEMISTRY SECOND SEMESTER

Course Title: GOOD LABORATORY PRACTICES (Elective Paper III)

		Credits : 03	
L:T:P:S	: 3:0:0:1	CIA : 40	
		Marks	
Exam	: 03	ESE : 60	
Hours		Marks	

Objective: To learn and follow good laboratory practices

Course Outcomes: At the end of the Course, the Student will be able to:

CO1	Understand the fundamental points of good laboratory practices
CO2	Handle laboratory animals with care
CO3	Acquire knowledge on the protocols need to be followed and Analyze the biosafety of GM foods
CO4	Explain the principle of good lab practicals.
CO5	Gain the Awareness of HACCP and, follow the Safety measures in Industrial
	Hygiene.

Mapping of Course Outcomes to Program specific Outcomes:

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	2	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	2

Correlation: 3 strong 2 medium 1 low

S.No.	Content of Module	Hrs	Cos
MO1	Introduction to Good laboratory practices. Fundamental points of GLP. Resources(organization, personnel, facilities and equipment),, Characterization(test items and test systems), Rules (study plans (or protocols) and written procedures), Results(raw data, final report and archives), Quality Assurance. OECD GLP PRINCIPLES.	9	CO1
MO2	Facilities: buildings and equipment: Dose Mixing Unit, Animal House Facility-Laboratory animal care, CPCSEA guidelines, Maintenance and calibration of equipments and their importance- Suitability and Calibration, Documentation, reporting of study results, standard operating procedures (sops), storage and retention of records and materials	9	CO2
МОЗ	BIOSAFETY and HAZARDS Biotechnology - potential hazards, biological weapons, biosafety of GM foods and GMOs. Human genome research - the objectives and approaches, the controversies. Safety and Hazard Analysis Hazards: Chemical Hazards classification- Radiation hazards and control of exposure to radiation- Fire triangle, fire prevention methods.	9	CO3
MO4	Principle of GLP to in vitro studies, Facilities, Test System Facilities, Facilities for Handling Test and Reference Items, Facilities for Handling Test and Reference Items, Test Systems, Conditions for Test Systems, Newly Received Test Systems, Test System Records, Test and Reference Items (including Negative and Positive Control Items) Performance of the Study and Reporting of Study Results	9	CO4
MO5	Industrial Hygiene: Introduction, evaluation and control toxicology: Routes of entry of toxic substances, toxic studies safe house keeping instrumentation for safe operation, personal protective equipments and their importance –usage Awareness of HACCP, Hazard Analysis Critical Control Points and OHSAS, Occupational Health Safety Assessment Series – standards in process safety	9	CO5

- 1. organization, W. h. (2008). *Good Laboratory Practice (GLP) : Quality Practices for Regulated Non-Clinical Research and Development* (2nd ed.). World Health Organization ISBN 10: <u>0619216204</u> / ISBN 13: <u>9780619216207</u>
- 2. organization, W. h. (2005). *TRAINING MANUAL. Good Laboratory Practice (GLP)* (2nd ed.). Alpha Science International, Ltd ISBN-13: 978-0750691192, ISBN-10: 0750691190
- 3. Anderson, Milton. A. (2002). *GLP Essentials: A Concise Guide to Good Laboratory Practice,* (2nd ed.). CRP press-**REFERENCE BOOKS:**
- 1. J, A.-S. M. (2010). Good Laboratory Practice. Pharmalogika -
- 2. P, S. J. (2014). *Good Laboratory Practice: the Why and the How.* Springer-Verlag Berlin and Heidelberg GmbH & Co. KG ISBN 10: 3642441033 / ISBN 13: 9783642441035
- **3.** Slomiany, M. G. (2009). *The Indispensable Guide to Good Laboratory Practice*. Createspace Independent ISBN 10: 1449553125 / ISBN 13: 9781449553128
- 4. Deshmukh, P. (2020). *Principles of Good Laboratory*. Adhyyan Books ISBN 10: 9388644549 / ISBN 13: 9789388644549

I MSC BIOCHEMISTRY II SEMESTER

Course title: PRACTICAL-III-ANALYTICAL BIOCHEMISTRY & MICROBIOLOGY

Course Code:	Credits : 02	
L:T:P:S : 0:0:3:0	CIA Marks : 50	
Exam Hours: 05	ESE Marks : 50	

Course outcomes: At the end of the course, the student will be able to:

CO	CO Statement
Number	
CO 1	Separate and identify sugars, amino acids, proteins and lipids on planar and
	column chromatographic techniques
CO 2	Identify bacteria by staining techniques
CO 3	Examine the microbiological quality of milk,water and food
CO 4	Analyze the sensitivity of bacteria towards antibiotics
CO 5	Deermine the molecular weight of protein by standard electrophoretic
	technique,namely SDS PAGE

Mapping Course Outcomes with Program Outcomes

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	2	2	3
CO3	3	2	2	3	2
CO4	3	3	3	3	3
CO5	3	3	3	3	3

1	Separation of identification of amino acids by paper	CO1- CO5				
	chromatography					
2	Separation of identification of sugars by paper chromatography					
3	Separation of identification of lipids by thin layer chromatography					
4	Separation of proteins by gel filtration					
5	Identification of bacteria by staining techniques (Simple &					
	differential)					
6	Biochemical characterization -Screening test a) amylase b)					
	Protease					
7	Bacteriological analysis of water by standard plate					
8	Bacteriological analysis and identification of quality of milk					
9	Microbiological examination of food					
Demons	tration experiments					
10	Determination of molecular weight of the proteins by SDS PAGE					
11	Antibiotic sensitivity Test					

- 1. Archana Ayyagari, A. N. (2007). *Lab Manual in Biochemistry, Immunology and Biotechnology.* Tata McGraw Hill Education ISBN: 9780070617674 0070617678 9780070077454 0070077452
- 2. Walker, K. W. (2000). Practical Biochemistry principles and techniques (5th ed.). Cambridge University press -
- 3. Singh, S. a. (2014). *Introductory Practical Biochemistry* (reprint ed.). Narosa publishing house ISBN 10: 9386217627 / ISBN 13: 9789386217622

- **1.** Manickam, S. S. (2018). *Biochemical Methods* (3rd ed.). New age International Pvt Ltd publishers ISBN 10: 8122421407 / ISBN 13: 9788122421408
- **2.** Jayaraman, J. (2011). *Laboratory Manual in Biochemistry*. New Age International Pvt Ltd Publishers ISBN-10 : 812243049X, ISBN-13 : 978-8122430493
- **3.** Walker, K. W. (2010). *Principles and techniques of Practical Biochemistry* (7th ed.). Cambridge University Press ISBN-10 : 1108716989 / ISBN-13 : 978-1108716987

I MSC BIOCHEMISTRY

II SEMESTER

Course Title PRACTICALS -IV- MOLECULAR BIOLOGY AND NUTRITION

Course Code:	Credits : 02
L:T:P:S : 0:0:3:0	CIA Marks : 50
Exam Hours : 05	ESE Marks : 50

Course Outcomes: At the end of the Course, the Students will be able to:

CO	CO Statement
NUMBER	
CO1	Isolate DNA and RNA from source and Estimate.
CO2	Estimate Protein, Iron, Calcium, Riboflavin, Thiamine, and Ascorbic acid from different sources.
CO3	Comprehend the application of Plasmid DNA and Gene cloning

Mapping of COs TO PSOs (MSc Program)

PSO/CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO5	PSO6	PSO7
CO1	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3

S.No.	Content of Module	Cos	
1	Absorption studies of DNA and protein		
2	Determination of melting temperature Tm and % GC content of DNA sample		
3	Isolation and estimation of DNA from animal tissue / Plant / Bacteria.		
4	Isolation and estimation of RNA from yeast		
5	Estimation of protein from food sample		
6	Estimation of Iron from food sample		
7	Estimation of calcium from food sample		
8	Estimation of Riboflavin/Thiamine by Spectro fluorimetry		
9	Estimation of Ascorbic acid from food sample.		
	Demonstration experiments		
10	Extraction of Plasmid DNA and Agarose Gel Electrophoresis		
11	Gene cloning		

Sl.No	Authors	Title	Publishers	Year of
				Publication
1	Prashant Kale	A practical manual for basic	LAP Lambert Academic	2017
	Prashant	techniques in molecular biology	Publishing	
	Shingote			
	Shriram Mirajkar			
2	Diwakar Singh	Molecular diagnostic A practical	New India Publishing	2020
		manual	Agency (NIPA)	
3	Shalini Sehgal	A laboratory manual of food analysis-	Dreamtech Press	2020
		paper back		

M.SC., BIOCHEMISTRY THIRD SEMESTER

Course Title: ADVANCED CLINICAL BIOCHEMISTRY (CORE PAPER VIII)

		Credits	: 04
L:T:P:S	: 4:0:0:0	CIA Marks	: 40
Exam Hours	: 03	ESE Marks	: 60

Course Outcomes: At the end of the Course, the Student will be able to:

CO	CO Statement		
NUMBER			
CO1	Identify the metabolic errors that lead to different disorders of carbohydrate		
	metabolism and help in the management of the same.		
CO2	Predict the underlying disease condition based on the measurement of		
	diagnostically significant enzymes.		
CO3	Analyze the disorders in lipid metabolism based on the detailed lipid profile of		
	the patient. Relate laboratory results in the diagnosis of liver diseases.		
CO4	Relate laboratory results to clinical diagnosis and relationship to liver, kidney,		
	pancreas and gastrointestinal function		
CO5	Use biochemical and molecular tools for diagnostic and therapeutic		
	interventionon hereditary and acquired disorders. Recognize the blood		
	disorders and classify them based on the underlying		
	defect.		

Mapping of Course Outcomes to Program specific Outcomes:

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	1	3
CO2	3	3	3	2	3
CO3	3	3	3	2	3
CO4	3	3	3	3	3
CO5	3	3	3	1	3

CORRELATION: 3-STRONG 2- MEDIUM 3- LOW

S.No.	Content of Module	Hrs	Cos
MO1	Disorders of carbohydrate metabolism - Glucose homeostasis, diabetes mellitus and its management, GTT, assay of HbAIC,glycogen storage disease. Inborn errors of metabolism-galactosemia, fructosuria and lactose intolerance.	15	CO1
MO2	Clinical enzymology - enzymes in plasma and their origin, Clinic significance of enzymes -isoenzymes (LDH, CK) - phosphatase, 5' nucleotidase, amylase, lipase, transaminase and gamma glutamyl transferase. Measurement of serum enzymes in diagnosis, enzyme pattern in myocardial infarction, liver, muscle and bone diseases.	15	CO2
моз	Diseases related to lipid metabolism – Hypercholesterolemia, atherosclerosis role of LDL – hyperlipoproteinemias and its types. Diseases relating to liver - cirrhosis, hepatitis. Jaundice with its types. Inherited diseases of bilirubin metabolism – Criggler- najjar syndrome, dubin Johnson syndrome gilbert syndrome - liver function tests	14	CO3,CO5
MO4	Acidity, ulcers – gastrointestinal disorders - gastric, duodenal, colon cancer, pancreatitis, gastric and pancreatic function tests. Diseases related to kidney - nephritis, nephrosis, uremia, renal failure, renal calculi, renal hypertension, renal tubular acidosis, and diabetes insipidus. Kidney function tests.	16	CO4, CO5
MO5	Disorders of Blood - Blood dyscrasias, Agranulocytosis, Thrombocytopenia, Aplastic, Hemolytic anemia, Hemoglobinopathies, Thrombosis, leucocytosis, leucopenia	15	CO5, CO6

TEXT BOOKS/REFERENCE BOOKS:

- 1. ChatterjeeRanashinde. (2012). Medical Biochemistry (8th ed). Jaypee ISBN: 9789350254844
- 2. Kaplan. (2010). Clinical Biochemistry (6th ed.). Mosby ISBN-10: 1464137846, ISBN-13: 978-1464137846
- 3. Tietz. (2018). Clinical Biochemistry (8th ed.). Saunders -

- 1. Gupta, P. P. (2013). Textbook of Biochemistry with Biomedical significance (2nd ed.). CBS Publishers and distributors ISBN 10: 8123922450 / ISBN 13: 9788123922454
- 2. T.M.Devlin. (2006). *Textbook of Biochemistry with Clinical Correlations*. CBS Publishers and Distributers ISBN 10: 0471513482 / ISBN 13: 9780471513483
- 3. Ayling, M. &. (2014). *Clinical Biochemistry* (3rd ed.). Metabolic and Clinical Aspects ISBN 10: 0702051403 / ISBN 13: 9780702051401

M.SC., BIOCHEMISTRY THIRD SEMESTER

Course Title: BIOSTATISTICS (CORE PAPER IX)

		Credits : 04
L:T:P:S	: 3:0:1:0	CIA Marks : 40
Exam Hours	: 03	ESE Marks : 60

Course Outcomes: At the end of the Course, the Student will be able to:

CO NUMBER	CO Statement
CO1	Recognize the definition of biostatistics and its scope and Ascertain the
	methods and importance of data collection and presentation
CO2	Examine the usage of statistical tools like measure of central tendency and
	measure of dispersion and Infer the results of skewness, kurtosis,
	correlation and regression
CO3	Appraise normal distribution and evaluate the concept of hypothesis testing
CO4	Apply and deduce hypothesis testing via t, z and chi square statistical
	distribution and ANOVA and make statistical decision
CO5	Conceive and comprehend the use of MS Excel and various statistical
	packages in handling and analyzing scientific data

Mapping of Course Outcomes to Program specific Outcomes:

	PS	PS	PS	PS O4	PS O5
	01	O2	O3	O4	O5
CO1	1	1	3	3	1
CO2	1	1	3	3	1
CO3	1	1	3	3	1
CO4	1	1	3	3	1
CO5	1	1	3	3	1

CORRELATION: 3-STRONG 2-MEDIUM 3-LOW

S.No	Content of	Hrs	Cos
•	Module		
MO1	Statistics - Scope -collection, classification, tabulation of		CO1
	Statistical Data – Diagrammatic representation – graphs – graph		
	drawing – graph paper – plotted curve –Sampling method and		
	standard errors – means – confidence limits – variance.		
MO2	Measures of central tendency – spearman test with an example (Problems included) measures of dispersion – skewness, kurtosis, moments – Correlation and regression – correlation table – coefficient of correlation – Z transformation – regression – relation between regression and correlation (Only theory).	15	CO2
МОЗ	Normal distribution – graphic representation – frequency curve and its characteristics –measures of central value, dispersion, coefficient of variation and methods of computation – Basis of Statistical Inference –Sampling Distribution – Testing of hypothesis – Null Hypothesis – Type I and Type II errors (Only theory)	15	СО3,
MO4	Tests of significance for large and small samples based on Normal, t, z distributions (Problems included) with regard to mean, variance, proportions and correlation coefficient – chi-square test of goodness of fit – contingency tables – Tests of significance –t tests – F tests – Analysis of variance (Problems included) – one way classification – Two way classification.	15	CO4
MO5	Spreadsheets – Data entry –mathematical functions – statistical function – Graphics display – printing spreadsheets – statistical analysis packages	15	CO5

- 1. Ramakrishnan.P. (2015). *Biostatistics*. Saras publication ISBN-10: 9384826049 / ISBN-13: 978-9384826048
 - 2. PranabkumarBanerjee. (2011). Introduction to biostatistics. S. Chand& Co Ltd -
 - 3. Sundaram. (2014). Medical Statistics. Wolters Kluwer India Pvt. Ltd -

- 1. Gurumani, N. (2006). Research Methodology for Biological Science. MJP Publisher ISBN 10: 8180940160 / ISBN 13: 9788180940163
- 2. R.M., K. a. (2016). *Comprehensive textbook of biostatistics and research methodology*. Bhalani publishing house ISBN-10: 9381496250 / ISBN-13: 978-9381496251
- 3. Bland.J., M. (2015). *An Introduction to Medical Statistics* (4th ed.). OUP Oxford ISBN 10: 0199589925 / ISBN 13: 9780199589920

M .SC., BIOCHEMISTRY THIRD SEMESTER Course Title: RESEARCH METHODOLOGY (CORE PAPER X)

		Credits : 04	
L:T:P:S	: 4:0:0:0	CIA : 40 Marks	
Exam Hours	: 03	ESE : 60 Marks	

Course Objectives:

To learn the fundamentals of research, research design, principles of scientific research, data collection and analysis of data.

Course Outcomes: At the end of the Course, the Student will be able to:

CO NUMBER	CO Statement
CO1	Gain wide knowledge on the fundamentals of research
CO2	Identify the research problem and research design
CO3	Enlighten Importance of Hypothesis, Characteristics of a Good Hypothesis
CO4	Exposure to write thesis
CO5	Acquire a knowledge on finding scientific articles using Pubmed

Mapping of Course Outcomes to Program specific Outcomes:

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	2	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3

Correlation: 3 strong 2 medium 1 low

S.No.	Content of	Hrs	Cos
	Module		
MO1	FUNDAMENTALS OF RESEARCH: Definition of research – Objectives of research, general characteristics of research, qualities of researcher, criteria for good research, Types of Research, approaches and significance of Research. Problems encountered in research, Motivation in Research.	15	CO1
MO2	IDENTIFICATION OF RESEARCH PROBLEM AND RESEARCH DESIGN: Scientific thinking, identification of research problem, defining the problem, evaluation of a Problem. Research design- contents and typesof research design, factors affecting research design.	15	CO2
МОЗ	THE RESEARCH HYPOTHESES: Meaning of Hypothesis, Definitions of Hypothesis, Importance of Hypothesis, Characteristics of a Good Hypothesis, Variables in a Hypothesis, formulating a Hypothesis, Testingthe Hypothesis	15	CO3
MO4	THESIS WRITING Thesis- Components of a thesis – format for writing thesis (Abstract, introduction, review of literature, materials and methods and discussion), reference styles. Useful search engines. E-resources (e-books/e-journals).	15	CO4
MO5	JOURNALS: Standard of research journals — International and national journals, Scopus indexed journals-explanation. Impact factor - citation index and H index-Definition. Preparation of manuscript - report writing - format of journals - proof reading - sources of information; journals, reviews, books, and monographs-bibliography. search engines - google, pubmed - national informatics center network services. Online data bas library.	15	CO5

- 1. Garg, C. &. (2019). *Research methodology, Methods and techniques* (4th ed.). New age Publishers ISBN 10: 8122436234 / ISBN 13: 9788122436235
- 2. mahal, P.-K. (2018). Research methodology. (6th ed.). New Age International publishers -
- 3. Gupta, D. K. (2013). Research Methodology. Nirali Prakashan ISBN 10: 9383525541 / ISBN 13: 9789383525546

- 1. Kothari, C. (2014). *Research Methodology: Methods and Techniques.* Oryx Press ISBN-10: 935139154X, ISBN-13: 978-9351391548
- 2. Day, Robert. A. (1998). *How To Write & Publish a Scientific Paper* (5th ed.). Oryx Press ISBN 10: 1573561657 / ISBN 13: 9781573561655
- 3. Paneerselvam, R. (2013). *Research Methodology* (2nd ed.). Prentice Hall India Learning Private Limited ISBN 10: 8120349466 / ISBN 13: 9788120349469

M.SC., BIOCHEMISTRY THIRD SEMESTER

Course Title: Hormonal Biochemistry (Elective Paper IV)

		Credits 03
L:T:P:S	: 3:0:0:1	CIA Marks : 40
Exam	: 03	ESE Marks : 60
Hours		

Course Outcomes: At the end of the Course, the Student will be able to:

CO NUMBER	CO Statement
CO1	Understand the structure of hormones and receptors. Classify hormones based
	on nature, mechanism of action. Illustrate cell signaling mechanism and
	Demonstrate Second messengers and
	their actions.
CO2	Explain the structure, biological action and regulation of hypothalamic and
CO2	pituitary hormones. Analyze and predict the cause for disease due to pituitary
	dysfunction
CO3 Discuss about Pancreas and its hormonal secretion, biological act	
C03	Analyze the clinical conditions with reference to pancreatic gland
CO4	Explain the structures biological functions and synthesis of thyroid hormones.
CO5	Compare the structure and metabolic effects of adrenal hormones

Mapping of Course Outcomes to Program Outcomes:

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	2	3
CO2	3	3	3	2	3
CO3	3	3	3	2	3
CO4	3	3	3	2	3
CO5	3	3	3	3	3

CORRELATION: 3-STRONG 2-MEDIUM 3-LOW

S.No.	Content of Module	Hrs	Cos
MO1	Hormones - Definition. Classification — Based on chemical nature and mechanism of action, class I, classIIa, class IIb with examples-Receptors - structure and types. Agonist and Antagonist —Definition. Secondary messengers-Definition Role of adenylate cyclase, G proteins, protein kinases, tyrosine kinase, Inositol phosphates, Diacyl glycerol, calcium, calmodulin Steroid hormone receptors — Mechanism of steroid hormone action.	9	CO1
MO2	Hypothalamus and pituitary hormones- hypothalamic hormones, Anterior pituitary hormones – actions and feedback regulation of synthesis. Glycoprotein hormones and POMC family. Natural Analgesics- Endorphins and Enkephalins. MSH. Posterior pituitary hormones- Oxytocin and vasopressin-Structure and biological functions Disorders due to Hypo and hyperactivity of pituitary hormones-gigantism, acromegaly, dwarfism. Diabetes insipidus	9	CO2
МОЗ	Pancreatic hormones – cell types of the islets of langerhans. Insulin – Biosynthesis and regulation of secretion. Biological actions. Mechanism of action. Insulin like growth factors. Glucagon –structure and functions. Role of Glucagon in glycogenolysis. Diabetes mellitus and its metabolic complications. Role of Somatostatin and Pancreatic polypeptide	9	CO3
MO4	UNIT IV Thyroid hormones – Synthesis and secretion, Transport and biological actions. Antithyroid agents. Thyroid diseases –Grave's disease and Hashimoto's thyroiditis. Calcium regulating Hormones: Calcitriol and calcitonin. Biosynthesis, functions. Rickets and osteomalacia – Calcium homeostasis – role of PTH. Hyperparathyroidism	9	CO4
MO5	UNIT V Adrenal hormones — Glucocorticoids, mineralocorticoids synthesis, secretion, transport. Biological effects. Adrenal androgens and estrogen — metabolic effects and functions. Adrenal medulla — Catecholamines, biosynthesis, storage, regulation of synthesis. Abnormal secretion of Adrenal gland hormones — Addison's disease, Cushing's syndrome, Phaeochromocytoma.	9	CO5

TEXT BOOKS

- 1. L, B. (2010). Hormonal Biochemistry. Discovery Publishing Pvt. Ltd -
- 2. Cooper, G. a. (2013). *The Cell: A Molecular Approach.* Sinauer Associates, Inc. ISBN 10: 0878931066 / ISBN 13: 9780878931064
- 3. ShlomoMelmed, K. S. (2015). *William Textbook of Endocrinology* (13th ed.). Elsevier ISBN 10: 0323297382 / ISBN 13: 9780323297387

- 1. Sathyanarayana. (2017). *Biochemistry*(4th ed). Elsevier ISBN: 9788131236017
- 2. Robert K.Murray, D. A. (2018). *Harper's Illustrated Biochemistry* (28th ed.). The McGraw-Hill Companies ISBN-10: 0071625917 / ISBN-13: 978-0071625913
- 3. Karp, G. (2013). *Cell and Molecular Biology.* John Wiley and Sons Inc ISBN-10 : 111830179X, ISBN-13 : 978-1118301791

M.SC., BIOCHEMISTRY THIRD SEMESTER

Course title: ADVANCED MEDICAL LABORATORY TECHNOLOGY

(Elective Paper IV)

		Credits : 03	
L:T:P:S	: 3:0:0:1	CIA : 40	
		Marks	
Exam	: 03	ESE : 60	
Hours		Marks	

Course Outcomes: At the end of the Course, the Student will be able to:

CO1	Gain a Wide knowledge on ABO blood grouping, Withdrawal of blood
CO2	State and discuss the importance of cerebrospinal fluid and semen
CO3	To know the importance of Urine and stool analysis in diagnosis of diseases.
CO4	Know the causes and consequences of amoebiasis and SARS
CO5	Culture of microorganisms and perform antibiotic sensitivity test

Mapping of Course Outcomes to Program Outcomes:

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	2	2	3	2	2
CO4	3	3	3	3	3
CO5	2	3	3	3	2

Correlation: 3 strong 2 medium 1 low

S.No.	Content of Module	Hrs	Cos
MO1	Blood : Composition of blood-Functions of RBCs, WBCs and Platelets. Blood grouping- ABO System, ABO Grouping, Rh typing. Coomb's test. Blood transfusion - Blood donors, donor screening, drawing of blood, compatibility testing, cross matching, blood transfusion complications. Blood Banking.	8	CO1
MO2	Cerebrospinal fluid and Other Body Fluids: Cerebrospinal fluid-composition-Function and analysis of CSF. Semen-Composition and its function. Sputum and its examination. Pregnancy test - Interpretation	7	CO2
МОЗ	 Urine Analysis: Collection and preservation of urine sample. Composition of urine, Normal and abnormal constituents of urine. Urinalysis-Procedure. Examination of glucose, ketone bodies, bile pigments in urine. Hematuria. Stool-Composition. Collection and examination of stools - inspection of faeces- odour, pH, Interfering substance. Test for occult blood, faecal fat, microscopic examination of stool specimen. 	10	CO3,CO5
MO4	Medical Parasitology Amoebiasis, Giardiasis - Causes and consequences, Treatment. Plasmodium vivax – life cycle, pathogenesis of malaria, Dengue fever, SARS, Ebola virus and corona virus	10	CO4, CO5
MO5	Medical Microbiology Culturing of organisms from various specimens. Culture media and antibiotic sensitivity test (pus, urine stool, sputum, throat swab, gram staining, Ziehl –Neilson staining (TB, Lepra bacilli). Safety procedure in microbiological techniques.	, 10 ,	CO5

- 1. V.H., T. (2019). *Handbook Medical Laboratory Technology* (2nd ed.). CBS publishers and distribution ISBN-10: 8123906773 / ISBN-13: 978-8123906775
- 2. ChatterjeeRanashinde. (2012). Medical Biochemistry (8th ed). Jaypee ISBN: 9789350254844
- 3. V.H., T. (2014). *Practical Textbook of Laboratory Medicine*.CBS publishers and distribution ISBN-10 : 8123918720 / ISBN-13 : 978-8123918723

- 1. Tietz. (2018). Clinical Biochemistry (8th ed.). Saunders.
- **2.** Praful B. Godkar, D. P. (2014). *Textbook of Medical Laboratory Technology.* bhalani Publishing House ISBN-10: 9780074632239 / ISBN-13: 978-0074632239
- **3.** Sood, R. (2009). *Medical Laboratory Technology Methods and Interpretations.* Jaypee ISBN 10: 9351523330 / ISBN 13: 9789351523338

M.SC., BIOCHEMISTRY THIRD SEMESTER

Course title: BIOENTREPRENEURSHIP MANAGEMENT (Elective Paper IV)

	:	Credits : 03
L:T:P:S	: 3:0:0:1	CIA : 40 Marks
Exam Hours	: 03	ESE : 60 Marks

Course Outcomes: At the end of the Course, the Student will be able to:

CO1	Recognize the importance of Bioethics, Entrepreneurship, communication and management skills so as to prepare the next generation of Indian Industrialist
CO2	Prepare business plan and prepare budget proposals, Gain knowledge on funding agencies.
CO3	Analyze the market by different analysis methods.
CO4	Familiarize with the Legal requirements for starting a company & registration of company. Understand the basics of accounting & finance.
CO5	Identify scope for entrepreneurship in biosciences and utilize the schemes promoted throughknowledge centers and various agencies

Mapping of Course Outcomes to Program specific Outcomes:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	3	3	3	3	3	3	2
CO2	3	2	3	3	3	3	3
CO3	3	3	3	3	3	3	1
CO4	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3

Correlation: 3 strong 2 medium 1 low

S.No	Content of Module	Hrs	Cos		
MO1	Introduction to Bioentrepreneurship Bioentrepreneurship – Introduction, Scope and its advantages of being an entrepreneur; Skills to develop as an entrepreneur - Creativity, leadership,managerial, Team (identification & building), growth steps (tracking & building); self-discipline; decision making; Types of industries – Biopharma, BioagricultureandCRO; patents, Trademarks, Copyrights – Procedure of patenting, the essentiality of patenting.				
MO2	Business Plan, Budgeting and Funding Idea or opportunity (activities - Brainstorm etc); Business plan & business proposal preparation; GANNT chart; funds/support from Government agencies like MSME/banks, DBT, BIRAC, Start-up and make in India Initiative;start-up finance models / funding options (Angle, seed, VC & Bootstrapping); Entry and exit strategy; pricing strategy; negotiations with financiers, bankers, government and law enforcement authorities; disput resolution skills; external environment/ changes;avoiding/managing crisis; broader vision—global thinking; mergers & acquisitions.	9	CO2		
МО3	Market Strategy Market analysis: SWOT analysis, PESTEL Analysis and Porter's Analysis to understand the Market; Basics of market forecast for the industry; distribution channels – franchising, policies, promotion, advertising, branding and market	9	3 3		
MO4	Legal Requirements, Finance and Accounting Legal requirements for starting a company; Registration of company in India; Ministry of Corporate Affairs (MCA); basics in accounting: concepts of balance sheet, profit and loss statement, double entry, bookkeeping; collaborations &partnerships Financial analysis: Ratio analysis, break even analysis, Budget and planning process, Profitability analysis; information technology for business administration and expansion; difficulties of entrepreneurship in India	9	CO 4		
MO5	Role of knowledge centres such as universities, innovation centres, research institutions (public & private) and business incubators in Entrepreneurship development; Assessment of technology development and technology transfer; quality control and quality assurance; Definition, role and importance of CDSCO, NBA, GLP, GCP, GMP	9	CO 5		

- 1. Adams, D. J. (2008). *Enterprise for life scientists: Developing innovation and entrepreneurship in the biosciences.* Bloxham: Scion ISBN 10: 1904842364 / ISBN 13: 9781904842361
- 2. Shimasaki, C. (2014). *Biotechnology Entrepreneurship: Starting, managing, and Leading Biotech Companies.* Academic London Press ISBN 10: 0124047300 / ISBN 13: 9780124047303
- 3. Jordan, J. F. (2014). *Innovation, Commercialization, and Start-Ups in Life Sciences.* London: CRC Press ISBN-10 : 812243049X, ISBN-13 : 978-8122430493
- 4. Desai, V. (2009). *The Dynamics of Entrepreneurial Development and Management New Himalaya*. New Himalaya House Delhi:pub ISBN: 9789350440810 9350440814

- 1. Shimasaki, C. (2014). *Biotechnology Entrepreneurship: Starting, managing, and Leading Biotech Companies.* Academic London Press ISBN 10: 0124047300 / ISBN 13: 9780124047303
- 2. Kapeleris, D. H. (2006). *Innovation and entrepreneurship in biotechnology: Concepts, theories & cases ISBN-13: 978-1482210125, ISBN-10: 1482210126*
- 3. Friedman, Y. (2008). *Best Practices in Biotechnology Education*. Logos Press ISBN 10: 0973467673 / ISBN 13: 9780973467673

M.SC., BIOCHEMISTRY THIRD SEMESTER

Course Title: BIOINFORMATICS (ADVANCED)

		Credits : 03	
L:T:P:S	: 4:0:0:0	CIA : 40	
		Marks	
Exam	: 03	ESE : 60	
Hours		Marks	

Course Outcomes: At the end of the Course, the Student will be able to:

CO NUMBER	CO Statement					
CO1	To introduce the fundamental concepts of computer devices and to explain					
COI	the various features of operating system					
	To correlate the terminologies used in Bioinformatics with molecular					
CO2	biology.					
	To summarize the organization of genes in prokaryotes and Eukaryotes					
	To classify biological database and to correlate the different file formats					
	used by nucleic acid and protein database.					
CO3	To explain the tools employed in analysis of query sequence with					
	subject sequence and illustrate the genome, pathway, specialized and					
	structural database					
	To discuss the concepts of alignment and phylogenetic analysis.					
CO4	To develop algorithms for interpreting biological data and construction of					
	phylogenetic tree. To analyze the 3D visualization tool used in					
	macromolecular structure Analysis					
CO5	Understand the properties of Drugs and design drugs using computer tools.					

Mapping of Course Outcomes to Program Outcomes:

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	2	3	2
CO3	3	3	2	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3

CORRELATION: 3-STRONG 2-MEDIUM 3-LOW

S.No	Content of Module	Hrs	Cos
MO1	Basics of computers – Input, output, CPU, ALU and Memory units – definitions and examples. Introduction to operating systems (MS Windows, linux) – Features of WINDOWS operating system, use of internet, email, search engines (Google, yahoo)	15	CO1
MO2	Bioinformatics: definitions – genomics, proteomics, metabolomics, transcriptomics, homologs, orthologs and paralogs. Prokaryotic and eukaryotic genome structure, Gene density, SNPs – gene diversity – gene ontology, gene order (synteny), plasticity zone, gene network, tandem repeats.	10	CO2
MO3	Introduction to Biological databases: nucleotide databases (NCBI,Genbank, EMBL, DDBJ) protein databases (Swissprot EBI, TrEMBL, PIR,); derived database (prosite, Pfam, PRINTS); Sequence submission methods and tools (sequin); sequence retrieval systems (entrez); sequence file formats and conversion tools; genome (TIGR, SANGER); metabolic pathway database (KEGG, EcoCyC); specialized database (COG, LIGAND, BRENDA) Structural databases-PDB.	15	CO3
MO4	Alignments sequence alignment –global alignment, local alignment; Scoring matrices - definition and method of derivation of the PAM & BLOSUM matrices Dynamic Programming-Needleman Wunch Algorithm, Smith Waterman Algorithm. Phylogenetic trees- concept of dendogram and cladogram; methods of construction - maximum parsimony method, maximum likelihood method and distance methods. Molecular Visualization tools- Rasmol, Swiss PDB viewer.	10	CO4
MO5	Drug Discovery-History, steps in drug discovery, Target identification, Target validation-QSAR-Lead identification- Computer aided drug designing-Ligand based approach-Target based approach	10	CO5

- 1. Mount, D. w. (2004). *Bioinformatics sequence and Genome Analysis*. Cold Spring -ISBN 10: <u>0879697121</u> / ISBN 13: <u>9780879697129</u>
- 2. S. G. Rastogi, N. (2013). BI Mtds and Applications. PHI learnings.
- 3. Ignacimuthu, S. (2013). *Basic Bioinformatics*. Alpha Science Int. Ltd ISBN-10: 1842658042 / ISBN-13: 978-1842658048

- 1. Lesik, A. (2014). *Introduction of Bioinformatics*. Oxford University Press ISBN 10: <u>0198724675</u> / ISBN 13: 9780198724674
- 2. Ramsden, J. (2015). Bioinformatics-An Introduction. Springer ISBN 978-1-4471-6702-0
- 3. Andreas D. Baxevanis, G. D. (2020). *Bioinformatics*. Wiley ISBN 10: 0471478784 / ISBN 13: 9780471478782

II MSC BIOCHEMISTRY

III SEMESTER

Course Title PRACTICAL V- ADVANCED CLINICAL BIOCHEMISTRY

Code:		Credits	: 02
L:T:P:S	: 0:0:3:0		CIA Marks : 50
Exam Hours	: 05		ESE Marks : 50

Course Outcomes: At the end of the Course, the Student will be able to:

CO	Description
CO1	Estimate biochemical parameters glucose, glycosylated Hb and A/G ratio
CO2	interpret the profile of lipids by estimation of cholesterol, triglycerides and free fatty acids
CO3	Determine the serum bilirubin, and renal markers
CO4	Estimate antioxidant stains by catalase and superoxide dismutase activity in blood
CO5	To fractionate the isoenzymes of LDH

Mapping of COs TO PSOs (MSc Program)

PSO/CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3

S.No	Contents	COs			
MO1	Estimation of blood glucose by glucose oxidase method	CO1			
MO2	Determination of A/G ratio by biuret method				
MO3	Determination of glycosylated Hb				
MO4	Estimation of sreum cholesterol by Zak's method,	CO2			
MO5	Estimation of serum triglycerides,				
MO6	Estimation of plasma free fatty acids				
MO7	Estimation of serum Bilirubin/ALP	CO3			
MO8	Estimation of Urea in urine				
MO9	Estimation of Creatinine in urine				
MO10	Estimation of superoxide dismutase	CO4			
MO11	Estimation of Catalase.	_			
	Demonstration Experiments	CO5			
	a) LDH Isoenzyme by native gel electrophoresis				
	b)Identification of biochemicals(Glucose, ketones, Protein,) with				
	Test strips				

REFERENCE BOOKS/TEXT BOOKS

- 1. Pal, G. P. (2006). *Text Book of Practical physiology* (2nd ed.). Orient Blacks ISBN 10: <u>8125030506</u> / ISBN 13: <u>9788125030508</u>
- 2. Raghu. (2006). Practical Biochemistry for Medical Students . Jaypee ISBN-10 : 818061106X / ISBN-13 : 978-8180611063
- 3. Gowenlock, A. H. (1988). *Varley's Practical Clinical Biochemistry* (6th ed.). CBS Publishers and distributors, India ISBN: 0849301564 9780849301568 0433338067 9780433338062 8123904274 9788123904276

- 1. Plummer, D. T. (n.d.). *An Introduction to Practical Biochemistry*(3rd ed). Tata Mc Graw Hill ISBN: 9780070841659
- **2.** Jayaraman, J. (2011). *Laboratory Manual in Biochemistry*. New Age International Pvt Ltd Publishers ISBN-10 : 812243049X, ISBN-13 : 978-8122430493
- **3.** Singh, S. K. (2005). *Introductory Practical Biochemistry* (2nd ed.). Alpha Science International, Ltd ISBN 10: 8173193029 / ISBN 13: 9788173193026

II MSC BIOCHEMISTRY III SEMESTER

Course Title PRACTICALS - VI-BIOINFORMATICS & IMMUNOLOGY

 Course Code:
 Credits
 : 02

 L:T:P:S
 : 0:0:3:0
 CIA Marks
 : 50

 Exam Hours
 : 05
 ESE Marks
 : 50

Course Outcomes: At the end of the Course, the Student will be able to:

CO	Description
CO1	Identify blood groups, test for complement fixation,RA factors
CO2	Test for quantitative determination of antigens
CO3	Analyze and Interpret nucleotide, protein sequences and predict protein
	structure
CO4	Identify enzyme regulatory sites using molecular visualization tool RASMOL
	, Examine homology search using Bioinformatics tool
CO5	Explain purification of antibody and analyze secondary structure of protein
	using prosite

Mapping of COs TO PSOs (MSc Program)

PSO/CO	PSO 1	PSO 2	PSO 3	PSO 4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3

S.No.	Content of Module	Cos		
MO1	ABO blood grouping and Rh factor typing by slide agglutination Test	CO1		
MO2	MO2 Complement fixation test			
MO3	Detection of RA factors			
MO4	VDRL test-Slide Flocculation test			
MO5	Quantitative determination of antigen -Single Radioimmuno diffusion			
MO6	Quantitative determination of antigen by Double Immunodiffusion	CO2		
МО7	To retrieve the nucleotide sequence of interest from biological database			
MO8	To retrieve Protein sequence of interest from biological database	CO3		
МО9	To Retrieve the protein structure using PDB	CO5		

MO10	Identification of active site, allosteric site, catalytic site regulatory site of enzyme using RASMOL	CO4	
MO11	Homology search-BLAST n/BLASTp		
	Demonstration experiments		
MO1	MO1 Purification of Antibody IgG by Ion exchange chromatography		
MO2	Protein motif and domain analysis using Prosite		

- 1. Immunology: Overview and Laboratory Manual TobiliSam-Yellowe, Springer,1st editio,2020
- 2. Laboratory Manual on Immunology and Molecular biology- Deepak Diwedi and Vinod Lambert Academic Publishing, 2013
- 3. Bioinformatics practical Manual:SequencingPractical- Mohammed Iftekhar,Mohammed Ghalib, Kindle edition,2015

M.SC., BIOCHEMISTRY FOURTH SEMESTER

Course Title: IMMUNOLOGY (CORE PAPER XI)

		Credits	: 04
L:T:P:S	: 4:0:0:0	CIA	: 40
		Marks	
Exam	: 03	ESE	: 60
Hours		Marks	

Course Outcomes: At the end of the Course, the Student will be able to:

CO NUMBER	CO Statement
CO1	Gain a wide knowledge on the types of immunity, cells and organs of immune
	system as well as state the types of vaccines.
CO2	Demonstrate familiarity with antigen, antibodies and complements.
CO3	Relate the origin, development, maturation process and general functions of B and T lymphocytes as well as explain the antigen processing and presentation pathways.
CO4	Identify the molecular mechanism behind hypersensitivity, anti immunity and immune suppression.
CO5	Discuss knowledge the principles & methodology involved in immunological techniques

Mapping of Course Outcomes to Program Outcomes:

	PSO	PSO	PSO	PS	PSO
	1	2	3	0	5
				4	
CO 1	3	3	3	2	3
CO 2	3	3	3	1	3
CO 3	3	3	3	2	3
CO 4	3	3	3	1	3
CO 5	3	3	3	1	3

CORRELATION: 3-STRONG 2- MEDIUM 3- LOW

S.No	Content of Module	Hrs	Cos
MO1	IMMUNITY: Classification, Innate immunity- Factors governing innate immunity- Mechanical, and cellular factors. Acquired immunity-Types Cells of immune system. Lymphoid organs, Central and peripheral. Bone marrow, thymus, bursa of fabricius, spleen, lymph node, MALT, cells of lymphoreticular system. Vaccination – types – live, killed, attenuated, toxoids, recombinant vaccines.	17	CO1
MO2	Antigens and immunogens, Haptens, and adjuvants definition. Factors affecting antigenicity. Epitopes and Paratopes. Antibodies - Structure and function of IgG. IgA, IgM, IgD, and IgE. Isotypes, Allotypes and Idiotypes. Compliments – classical and alternate pathways – disorders of complements activation.	13	CO2
МОЗ	B-cell markers. B cell development. Maturation, activation, differentiation of B cells. Theories of antibody formation - clonal selection theory. Molecular basis of antibody diversity T cell marker, TCR structure and diversity,. Maturation, activation, differentiation of T cells. Antigen processing &presentation - Cytosolic and endocytic pathway Complement components and its activation (classical & alternate pathway)	17	CO3
MO4	Hypersensitivity – immediate & delayed, Autoimmunity – Organ and Systemic specific diseases. Myasthenia gravis, Graves disease, Systemic lupus erythromatosis, Glomerulonephritis and Rheumatoid arthritis. Transplantation immunology – MHC complex, class I and II structures and functions – graft vs. host reactions, HLA typing – lymphocytotoxicity, cross matching, immune suppressive agents.	13	CO4
MO5	Antigen – antibody reactions – precipitation & agglutination reactions – applications – WIDAL test and Coombs test – immunodiffusion – SID, DID – immunoelectrophoresis. ELISA and its types, Immunofluorescence - Direct, indirect and FACS. Monoclonal antibodies production and applications – RIA.	15	CO5

- 1. Jud Owen, J. P. (2013). *Kuby Immunology.* International Edition W. H. Freeman ISBN-10: 1464137846, ISBN-13: 978-1464137846
- 2. AK, A. (2011). *Cellular and Molecular immunology.* Elsevier Health Sciences ISBN 10: 0808921355 / ISBN 13: 9780808921356
- 3. SudhaGangal. (2013). *Textbook of Basic and Clinical Immunology.* Orient Blackswan Private Limited New Delhi ISBN 10: 8173718296 / ISBN 13: 9788173718298
- 4. Delves P, M. S. (2011). *Roitt's Essential Immunology.* (12th ed.). Wiley- Blackwell Scientific Publication, Oxford ISBN 10: 1405196831 / ISBN 13: 9781405196833

- 1. Roitt, I. (2017). *Immunology*(13th ed). Wiley Black Well ISBN-10: 1118415779 / ISBN-13: 978- 1118415771
- 2. Kuby, J. (2018). *Immunology*(5th ed). W.H. Freeman ISBN-10 : 1319114709 / ISBN-13 : 978-1319114701
- 3. Rao, C. V. (2017). *Immunology* (3rd ed.). Alpha Science Int. Ltd ISBN-10: 1842652559 / ISBN-13: 978-1842652558
- 4. Paniker. (2017). Immunology (10th ed.). University Press ISBN 10: 1847558569 / ISBN 13: 9781847558565

FOURTH SEMESTER

Course Title: NUTRIGENOMICS (ADVANCED)

		Credits : 03	
L:T:P:S	: 3:1:0:0	CIA : 40	
		Marks	
Exam	: 03	ESE : 60	
Hours		Marks	

Course Outcomes: At the end of the Course, the Student will be able to:

CO	CO Statement
NUMBER	
CO1	Understand and apply the knowledge of basics of genetics, epigenetics in the context of nutrigenomics
CO2	Understand and differentiate between genetics and genomics in the context of diseases with an idea on SNPs
CO3	Understand the concept of nutrigenomics and the genes associated with few biochemical disorders
CO4	Understand the relationship between various nutrients and their role in gene regulation- the core concept of nutrigenomics
CO5	Understand the relationship & interactions between food (diet) and genes in humans.
CO6	Know the types of foods, biomarkers in identifying diseases and ethical issues associated with nutrigenomics field of study.

Mapping of Course Outcomes to Program Outcomes:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	3	1	1	1	3	2	1
CO2	3	2	1	2	3	1	2
CO3	3	3	1	2	3	3	2
CO4	3	3	1	3	3	2	1
CO5	3	3	1	2	3	2	2
CO6	3	3	2	3	3	2	1

Correlations: 3 Strong 2 Medium 1 Low

Modul e No.	Module content	Hrs	СО
MO1	Basics Of Genetics - Branches of genetics -Epigenetics (http://learn.genetics.utah.edu/content/epigenetics/intro/) Methylation on the nucleosome -Mammalian DNA methyltransferases -Chromatin remodeling and histone modifications -Nutrients and DNA methylation Nutrients, histone modifications, & chromatin remodeling in chronic inflammation - Nutrients, epigenetics, and embryonic development - Nutrition, epigenetics, and agingNutrition, epigenetics, and cancer -Genetics History Of Dietetics And Genetics	12	CO1
MO2	Nutrigenetics – Applications - Nutrigenetics And Type 2 Diabetes Mellitus Nutrigenetics And Cardiovascular Diseases - Nutrigenetics And Cancer What Are Snps And How Are They Found? Snps& Disease Diagnosis - Snps& Drug Development Snps&Ncbi -Snp AnalysisGenetics Vs. Genomics	10	CO2
МОЗ	Nutrigenomics – Introduction -Rationale And Aims Of Nutrigenomics - Genes Associated With Various Diseases- Genes Associated With Lipid Metabolism, AntioxidantFunction And Detoxification, Bone Structure, Inflammatory Response, Glucose Balance	10	CO3
MO4	Nutrition And Gene Regulation - Effect Of Carbohydrate On Gene Expression - Regulation Of Gene Expression By Dietary Fat - Effect Of Protein On Gene Expression - Influence of amino acidsEffect Of Minerals On Gene Expression - Effect of Zinc on gene expression - Effect Of Vitamins On Gene Expression	16	CO4
MO5	Gene- Diet Interactions - Nutrient Intake Values (Nivs): A Recommended Terminology - Complexity Of Diet - Diet- Disease Relationships — Nutraceuticals - Functional Foods- Genetically Modified Foods — Gmos - Taster Strips PTC (Phenylthiourea-Phenylthiocarbamide): Sodium Benzoate - Personal Nutrition - Ectopic Fat "Dysfunctional" Fat vs. "Healthy" Fat - ectopic fat storage and lipotoxicity — Biomarkers - Genetic Tests - EthicalIssues	12	CO5

RECOMMENDED BOOKS:

- 1. Tsankova, N. R. (2007). *Epigenetic regulation in psychiatric disorders*. Nature Reviews Neuroscience, 8:355-367.
- 2. German JB, Y. C. (2004). Personalizing foods for health and preference. Food technol 58:26-31
- 3. Raffaele De Caterina (Editor), J. A. (2019). *Principles of Nutrigenetics and Nutrigenomics: Fundamentals of Individualized Nutrition* (1st ed.). Academic Press.

- 1. Caterina, R. D. (2019). *Principles of Nutrigenetics and Nutrigenomics.* Elsevier Science and Technology ISBN 10: 0128045728 / ISBN 13: 9780128045725
- 2. Lévesque L, O. V. (2008). *Integrating anticipated nutrigenomics bioscience applications with ethical aspects.* OMICS.
- 3. http://www.ncbi.nlm.nih.gov/pr ojects/GeneTests/static/about/w hatis/mission.shtml

M.SC., BIOCHEMISTRY FOURTH SEMESTER

Course Title: LIFE STYLE DISEASE AND PREVENTION (Elective Paper V)

		Credits	: 03
L:T:P:S	: 3:0:0:1	CIA	: 40
		Marks	
Exam	: 03	ESE	: 60
Hours		Marks	

Course Outcomes: At the end of the Course, the Student will be able to:

CO NUMBER	CO Statement
CO1	Ascertain the risk factors that contribute to obesity and diabetes mellitus and
	examine their management
CO2	Associate hypertension with chronic renal failure and quote the causes, types,
	symptoms and treatment of kidney stones
CO3	Assess the causes, types, symptoms, diagnosis and treatment of cancer and
	evaluate the consequences of cigarette smoking
CO4	Identify factors influencing aging and describe age related diseases
CO5	Diagnose the etiology, symptoms and treatment aspects of gall stone
	formation. Determine the causes and prevention of ulcer

Mapping of Course Outcomes to Program Outcomes:

	PO1	PO2	PO3	PO4	PO5
CO1	3	2	2	1	1
CO2	3	2	2	1	1
CO3	3	2	2	1	1
CO4	3	2	2	1	1
CO5	3	2	2	1	1

CORRELATION: 3-STRONG 2- MEDIUM 3- LOW

S.No	Content of Module	Hrs	Cos
MO1	Obesity- prevalence- causes, consequences, symptoms-Coronary heart.Disease and type 2 diabetes mellitus- lifestyle and dietary management of obesity.	9	CO1
MO2	Hypertension- blood pressure- normal level of blood pressure, dietary management of hypertension, stroke and chronic renal failure due to hypertension.kidney stone- causes, types, symptoms and treatment (only lithotropy), dietary management for prevention of kidney stones.	9	CO2
МО3	Cancer- types of cancer, etiology of breast cancer diagnosis (self examination, Mammography) and treatment (radiation, chemotherapy, surgery). Cervical cancer causes, types, symptoms, diagnosis and treatment (radiation, chemotherapy, surgery). Cigarette smoking and symptoms, diagnosis and treatment (chemotherapy).	9	CO3
MO4	Aging- Factors influencing aging. Age related diseases- dementia, osteoporosis, Osteo arthritis- causes sign and symptoms, preventive, measures of aging with special reference to antioxidants.	9	CO4
MO5	Gallstones- causes, factors, aetiology of gall stones, types of gall stones, symptoms, preventive aspects of gall stone. Drug therapy- ursodeoxycholic acid, surgical treatment and dietary management — Ulcer- causes and prevention.		CO5

REFERENCE BOOKS/TEXT BOOKS:

- 1. Devlin, T. M. (2010). *Textbook on Biochemistry with Clinical Correlation* (7th ed.). John Wiley and Sons ISBN: 978-0-470-28173-4
- 2. (eds)Tietz, C. A. (2012). *Textbook of Clinical Chemistry and Molecular Diagnosis* (5th ed.)- ISBN 10: 1416061649 / ISBN 13: 9781416061649
- 3. Tietz. (2014). Fundamentals of clinical chemistry and molecular diagnostics ISBN 10: 1455741655 / ISBN 13: 9781455741656

- 1. M.N.Chatterjea. (2006). *Textbook of Medical Biochemistry* (6^{th} ed) . Jaypee Brothers. Medical Publishers (P)Ltd ISBN-13: 978-9350254844, ISBN-10: 9789350254844
- 2. Ayling, M. &. (2014). *Clinical Biochemistry* (3rd ed.). Metabolic and Clinical Aspects ISBN 10: 0702051403 / ISBN 13: 9780702051401
- 3. Swaminathan. (2005). Advanced Textbooks of food and Nutrition. BAPP CO PRESS -

M.SC., BIOCHEMISTRY FOURTH SEMESTER Course Title: HEALTHCARE MANAGEMENT (Elective Paper V)

		Credits	: 03
L:T:P:S	: 3:0:0:1	CIA	: 40
		Marks	
Exam	: 03	ESE	: 60
Hours		Marks	

Course outcomes: At the end of the course, the student will be able to:

CO1	Understand the importance of effective healthcare administration
CO2	
	Compare and analyse the merits and demerits of different types of health systems in india
CO3	
	Recognize the role of the health care sector in the prevention and management of diseases.
CO4	Get suitably equipped to meet the challenges of the health care sector
CO5	Assist in the working of diverse departments in the hospital

Mapping of course outcomes to program specific outcomes:

171	DO1				
	PO1	PO2	PO3	PO4	PO5
CO1					
	3	3	1	3	3
CO2					
	3	3	1	3	3
CO3					
	3	3	2	2	3
CO4					
	3	3	2	2	3
CO5					
	3	3	1	3	3

CORRELATION : 3-STRONG 2- MEDIUM 3- LOW

S.No	Content of Module	Hrs	Co s
MO1	Introduction to public health- Evolution of public health. Important public health acts, health problems of developed and developing countries, health problems in india, environment and health.	6	CO1
MO2	Health care systems in India ,Health planning in India including various committees and national health plicy and health goals set from time to time . publicati sector with reference to centre, state, district and block level structures and local bodies and panchayati raj organization and functions of community health centres and primary health centres (PHCS). Health manpower, primary health care and concept, alternative systems of medicine, like ayurveda, homeopathy, etc. holistic approach nongovernmental publications (NGOs) and private voluntary publications (PVOS). Unorganized sector. Basic epidemiology and prevention of diseases Definition and concepts of	7	CO2
WIOS	epidemiology, concepts of health and diseaseprevention and control of specific diseases – cholera, plague, smallpox, malaria, tuberculosis, leprosy, filariasis	,	C03
MO4	Hospital operation management- Management of Indian hospitals-challenges & strategies. Moderntechniques of hospital management. Operation concept- use of models. Health services research & formalized managerial methods. Management of quality assured services of professional service units of hospitals. Quality control mechanisms	8	CO4
MO5	Medical record science Definition and types of medical record, importance of medical record, flow chart of function, statutory requirements of maintenance, coding, indexing and filing, computerization of record, report and returns by the record department, statistical information and ICD. Exceptional management needs in healthcare units- management of blood bank, donated organs, morgues, and dispensaries.	12	CO5

- 1. Amelung, V. E. (2013). Healthcare Management. Springer -
- 2. Kieran, W. (n.d.). *Healthcare management*. Second edition Tata McGraw Hill publishers- ISBN 10: 0070706646 / ISBN 13: 9780070706644
- 3. Sharon b. Buchbinder and Nancy h. Shaks, J. (2012). *Introduction to healthcare management*. Barlett Learning ISBN 10: 1284156567 / ISBN 13: 9781284156560

- 1. galloway, N. g. (2017). *Leadership and management in healthcare* (3rd ed.). Sage publishers UK ISBN 10: 1473965020 / ISBN 13: 9781473965027
- 2. vikas, S. l. (n.d.). Public health management (2nd ed.). CBS publishers ISBN: 978-9387742932
- 3. Sharon B. Buchbinder, N. H. (2011). *Introduction To Health Care Management* (2nd ed.). Jones and Bartlett Publishers, In ISBN 10: 0763790869 / ISBN 13: 9780763790868

M.SC., BIOCHEMISTRY

Course title: FREE RADICAL BIOLOGY (Elective Paper V)

		Credits : 03
L:T:P:S	: 3:0:0:1	CIA Marks : 40
Exam	: 03	ESE Marks : 60
Hours		

Course Outcomes: At the end of the Course, the Student will be able to:

CO1	
	Gain a wide knowledge on free radicals and its deleterious
	effects
CO2	Analyze the importance of antioxidant rich foods
CO3	Assess the Biological functions of vitamin as an antioxidant
CO4	Describe the oxidative stress in diseased condition. Role of phytocompounds as antioxidants
CO5	Illustrate the formation of Reactive oxygen and nitrogen species formation in phagocytosis

Mapping of Course Outcomes to Program specific Outcomes:

	PSO1	PSO 2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	2	2	2	2	2

Correlation: 3 strong, 2 medium, 1 low

S.No.	Content of Module	Hrs	C os
MO1	Free radicals-Definition-ROS and RNS. Superoxide radicals (O2•–), hydrogen peroxide (H2O2), hydroxyl radicals (•OH), and singlet oxygen (¹O2) Oxidants and Free Radical Production. Physiological Activities of Free Radicals. Detrimental Effects of Free Radicals on Human Health autoxidation initiated by oxygen radicals. Oxidative stress-Definition-Role of oxidants - Lipid peroxides, hydroperoxides and protein carbonyls in cellular damage	12	CO1
MO2	Enzymatic antioxidants - Chemistry, mechanism, antioxidant effects of superoxide dismutase, catalase, Glutathione peroxidase. Antioxidant rich foods.	8	CO2
МОЗ	Vitamins as Antioxidants. Sources, chemistry, and biological functions of antioxidant vitamins- Vitamin A, Vitamin C, Vitamin E.	7	CO3, CO5
MO4	Oxidative stress in diseased condition- cancer, Cardiovascular Disease, Neurological Disease, Diabetes mellitus. Role of Exogenous Antioxidants and Human Health. Flavonoids, Ascorbic Acid, Polyphenols as antioxidants.	8	CO4, CO5
MO5	Reactive oxygen species formation in phagocytosis, Respiratory burst. Role of SOD and catalase. Formation of Hypochlorous acid. Formation of Nitric oxide in cell. Formation of ROS in chlorophyll and their effects on photosynthesis. Triplet chlorophyll. Role of enzymatic antioxidants in neutralizing free radicals in plants	10	CO5

- 1. L, B. (2010). Hormonal Biochemistry. Discovery Publishing Pvt. Ltd -
- 2. Rodwell, V. (2018). Harper's Illustrated Biochemistry. McGrew. Hill.
- 3. ShlomoMelmed, K. S. (2015). *William Textbook of Endocrinology* (13th ed.). Elsevier ISBN 10: 0323297382 / ISBN 13: 9780323297387

- 1. B.Srilakshmi, B. (2017). Food Science (Multi Colour Edition ed.). New Age International Publishers ISBN 10: 8122438091 / ISBN 13: 9788122438093
- 2. Sathyanarayana. (2017). Biochemistry. Elsevier- ISBN: 9788131236017
 - **3.** Karp, G. (2013). *Cell and Molecular Biology.* John Wiley and Sons Inc ISBN-10 : 111830179X, ISBN-13 : 978-1118301791